首页> 外文期刊>Process Biochemistry >Modulation of transglycosylation and improved malto-oligosaccharide synthesis by protein engineering of maltogenic amylase from Bacillus lehensis G1
【24h】

Modulation of transglycosylation and improved malto-oligosaccharide synthesis by protein engineering of maltogenic amylase from Bacillus lehensis G1

机译:Lehensis G1产麦芽糖淀粉酶的蛋白质工程调节转糖基化和改进的麦芽低聚糖合成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Malto-oligosaccharide synthesis using maltogenic amylase often struggles with product rehydrolyzation. The malto-oligosaccharide synthesis using a maltogenic amylase (MAGI) from Bacillus lehertsis G1 was enhanced using a structure-guided protein engineering approach. Mutations decreased the hydrolysis activity of the enzyme and caused various modulations in its transglycosylation properties. W359F, Y377F and M375I mutations caused a reduction in steric interference, an alteration of subsite occupation and an increase in internal flexibility to accommodate longer donor/acceptor molecules for transglycosylation, resulting in an increase in the transglycosylation to hydrolysis ratio of up to 4.0-fold. The increase in active site hydrophobicity that was caused from the W359F and M375I mutations reduced the concentration of maltotriose required for use as a donor/acceptor for transglycosylation to 100 mM and 50 mM, respectively, compared to the 200 mM needed for wild-type. An improvement of the transglycosylation to hydrolysis ratio by 4.2-fold was also demonstrated in each of the mutants. Interestingly, a reduction of steric interference and hydrolysis suppression was caused by the Y377F mutation and introduced a synergistic effect to produce malto-oligosaccharides with a higher degree of polymerization than wild-type. These findings showed that modification of the active site structure imposed various effects on MAGI activities during malto-oligosaccharide synthesis. (C) 2015 Published by Elsevier Ltd.
机译:使用产麦芽糖淀粉酶的麦芽寡糖合成通常难以进行产物再水解。使用结构指导的蛋白质工程方法,使用了来自芽孢杆菌G1的麦芽糖淀粉酶(MAGI)合成了麦芽低聚糖。突变降低了酶的水解活性,并引起了其转糖基化特性的各种调节。 W359F,Y377F和M375I突变导致空间干扰减少,亚位占据的改变以及内部柔韧性的提高,以适应更长的供体/受体分子进行转糖基化,从而使转糖基化与水解的比率增加了多达4.0倍。与野生型所需的200 mM相比,由W359F和M375I突变引起的活性位点疏水性的增加将用作转糖基化的供体/受体所需的麦芽三糖的浓度分别降低至100 mM和50 mM。在每个突变体中也证明了转糖基化与水解的比率提高了4.2倍。有趣的是,Y377F突变引起了空间干扰的减少和水解抑制,并产生了协同作用,以产生比野生型更高聚合度的麦芽寡糖。这些发现表明,在麦芽寡糖合成过程中,对活性位点结构的修饰对MAGI活性施加了各种作用。 (C)2015年由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号