首页> 外文期刊>Proceedings of the IEEE >Narrowband and Wideband Metamaterial Antennas Based on Degenerate Band Edge and Magnetic Photonic Crystals
【24h】

Narrowband and Wideband Metamaterial Antennas Based on Degenerate Band Edge and Magnetic Photonic Crystals

机译:基于简并带边和磁光子晶体的窄带和宽带超材料天线

获取原文
获取原文并翻译 | 示例
           

摘要

Historically, antennas and microwave devices relied on isotropic media. This provided for limited degrees of freedom (one for dielectric and another for magnetic) in the design process. In contrast, anisotropic media introduce several more degrees of freedom (at least three more for dielectrics and three additional ones for magnetic) opening a new direction in designing radio-frequency (RF) communication devices and wireless systems. A focus of the paper is the introduction of anisotropic media parameters emulated using simple printed, but highly coupled, transmission lines (TRLs). The paper begins by introducing the equivalence between in-plane anisotropy and coupled TRLs to realize degenerate band edge (DBE) and magnetic photonic crystal (MPC) modes. This is followed by the design of miniature antenna elements via dispersion engineering, demonstrating their performance on small finite substrates. The second part of the paper is focused on concatenating DBE and MPC antenna elements to realize smaller size wideband arrays. Such arrays exploit the current sheet antenna (CSA) concept to achieve the coveted goal of small wideband metamaterial arrays. For example, by constructing an array of antenna elements $sim!lambda/10timeslambda/10$ in size, highly conformal (very thin) apertures delivering 5 : 1 bandwidth are demonstrated while avoiding grating lobes. In contrast to transitional approaches, the proposed method exploits (rather than suppressing) the metallic ground plane inductance. Instead, the capacitance of the tightly coupled antenna elements is used to cancel the inductance over wide bandwidths. By further employing small size array elements, large bandwidths can be achieved using a smaller footprint.
机译:从历史上看,天线和微波设备依靠各向同性介质。这在设计过程中提供了有限的自由度(一个用于介质,另一个用于磁性)。相反,各向异性介质引入了更多的自由度(对于电介质至少增加了三个自由度,对于磁介质至少增加了三个自由度),为设计射频(RF)通信设备和无线系统开辟了新的方向。本文的重点是引入各向异性介质参数,该参数使用简单的印刷但高度耦合的传输线(TRL)进行仿真。本文首先介绍了平面各向异性和耦合的TRL之间的等价关系,以实现简并能带边缘(DBE)和磁光子晶体(MPC)模式。接下来是通过分散工程设计微型天线元件,以展示其在小型有限基底上的性能。本文的第二部分重点在于串联DBE和MPC天线元件,以实现更小尺寸的宽带阵列。这样的阵列利用当前的片状天线(CSA)概念来实现小型宽带超材料阵列令人垂涎的目标。例如,通过构造天线元素数组 $ sim!lambda / 10timeslambda / 10 $ ,高度保形(非常展示了可提供5 demonstrated:1带宽的超薄孔径,同时避免了光栅波瓣。与过渡方法相反,该方法利用(而不是抑制)金属接地平面电感。相反,紧密耦合的天线元件的电容用于抵消宽带宽上的电感。通过进一步采用小尺寸的阵列元件,可以使用较小的占地面积实现大带宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号