首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism
【24h】

Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism

机译:过渡态结构作为蛋白质折叠机制的统一基础:接触顺序,链拓扑,稳定性和扩展核机制

获取原文
获取原文并翻译 | 示例
       

摘要

I attempt to reconcile apparently conflicting factors and mecha- nisms that have been proposed to determine the rate constant for two-state folding of small proteins, on the basis of general features of the structures of transition states. φ-Value analysis implies a transition state for folding that resembles an expanded and dis- torted native structure. which is built around an extended nucleus. The nucleus is composed predominantly of elements of partly or well-formed native secondary structure that are stabilized by local and long-range tertiary interactions. These long-range interactions give rise to connecting loops. frequently containing the native loops that are poorly structured. l derive an equation that relates differences in the contact order of a protein to changes in the length of linking loops, which, in turn, is directly related to the unfavorable free energy of the loops in the transition state. Kinetic data on loop extension mutants of Cl2 and alpha-spectrin SH3 domain fit the equation qualitatively. The rate of folding depends primarily on the interactions that directly stabilize the nucleus, especially those in native-like secondary structure and those resulting from the entropy loss from the connecting loops, which vary with contact order. This partitioning of energy accounts for the success of some algorithms that predict folding rates, because they use these principles either explicitly or implicitly. The extended nucleus model thus unifies the observations of rate depending on both stability and topology.
机译:我试图调和明显的矛盾因素和机制,这些因素和机制已被提出来根据过渡态结构的一般特征来确定小蛋白的两态折叠的速率常数。 φ值分析表明折叠的过渡状态类似于已扩展和扭曲的本机结构。它围绕一个扩展的核而建。原子核主要由部分或结构良好的天然二级结构的元素组成,这些元素通过局部和远程第三级相互作用而稳定。这些长距离的相互作用引起了连接回路。通常包含结构不良的本机循环。我推导了一个方程,该方程将蛋白质的接触顺序差异与连接环长度的变化相关,而连接环长度的变化又直接关系到过渡态中环的不利自由能。 Cl2和α-spectrinSH3域的环状延伸突变体的动力学数据定性地拟合了该方程。折叠的速度主要取决于直接稳定核的相互作用,尤其是天然样二级结构中的相互作用以及由连接环的熵损失引起的相互作用,其随接触顺序而变化。能量的这种分配说明了一些预测折合速率的算法的成功,因为它们显式或隐式地使用了这些原理。因此,扩展核模型根据稳定性和拓扑结构统一了速率的观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号