首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence
【24h】

Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence

机译:细菌对于化学梯度的空间感测来说并不是太小:一个实验证据

获取原文
获取原文并翻译 | 示例
       

摘要

By analyzing the chemotactic behavior of a recently described marine bacterial species, we provide experimental evidence that bacteria are not too small for sensing chemical gradients spatially. The bipolar flagellated vibrioid bacteria (typical size 2 x 6 μm) exhibit a unique motility pattern as they translate along as well as rotate around their short axis, i.e., the pathways of the cell poles describe a double helix. The natural habitat of the bacteria is characterized by steep oxygen gradients where they accumulate in a band at their preferred oxygen concentration of ≈2 μM. Single cells leaving the band toward the oxic region typically return to the band within 16 s following a U-shaped track. A detailed analysis of the tracks reveals that the cells must be able to sense the oxygen gradient perpendicular to their swimming direction. Thus, they can detect oxygen gradients along a distance of ≈5 μm corresponding to the extension of their long axis. The observed behavior can be explained by the presence of two independent sensor regions at either cell pole that modulate the rotation speed of the polar flagellar bundles, i.e., the flagellar bundle at the cell pole exposed to higher oxygen concentration is rotating faster than the other bundle. A mathematical model based on these assumptions reproduces the observed swimming behavior of the bacteria.
机译:通过分析最近描述的海洋细菌物种的趋化行为,我们提供实验证据表明细菌对于在空间上感应化学梯度的作用而言并不是太小。双极鞭毛的类病毒细菌(通常大小为2 x 6μm)在沿其短轴平移并绕其短轴旋转时表现出独特的运动模式,即细胞极的路径描述为双螺旋。细菌的自然栖息地的特征在于陡峭的氧梯度,在该处其优选的氧浓度约为≈2μM,它们在一条带中积累。离开带向有氧区域的单个细胞通常会在U形轨迹后的16秒内返回带。对轨道的详细分析表明,细胞必须能够感知垂直于其游泳方向的氧梯度。因此,他们可以沿着与长轴延伸相对应的≈5μm的距离检测氧梯度。观察到的行为可以通过在两个细胞极处存在两个独立的传感器区域来解释,这些区域可调节极性鞭毛束的旋转速度,即暴露于较高氧气浓度的细胞极处的鞭毛束的旋转速度快于另一个束。基于这些假设的数学模型再现了观察到的细菌游动行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号