首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.
【24h】

Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli.

机译:戊二醛毒素,核糖核苷酸还原酶和大肠杆菌DNA复制系统组件的相互作用。

获取原文
获取原文并翻译 | 示例
           

摘要

A strain of Escherichia coli missing three members of the thioredoxin superfamily, thioredoxins 1 and 2 and glutaredoxin 1, is unable to grow, a phenotype presumed to be due to the inability of cells to reduce the essential enzyme ribonucleotide reductase. Two classes of mutations can restore growth to such a strain. First, we have isolated a collection of mutations in the gene for the protein glutaredoxin 3 that suppress the growth defect. Remarkably, all eight independent mutations alter the same amino acid, methionine-43, changing it to valine, isoleucine, or leucine. From the position of the amino acid changes and their effects, we propose that these alterations change the protein so that its properties are closer to those of glutaredoxin 1. The second means of suppressing the growth defects of the multiply mutant strain was by mutations in the DNA replication genes, dnaA and dnaN. These mutations substantially increase the expression of ribonucleotide reductase, most likely by altering the interaction of the regulatory protein DnaA with the ribonucleotide reductase promoter. Our results suggest that this increase in the concentration of ribonucleotide reductase in the cell allows more effective interaction with glutaredoxin 3, thus restoring an effective pool of deoxyribonucleotides. Our studies present direct evidence that ribonucleotide reductase is the only essential enzyme that requires the three reductive proteins missing in our strains. Our results also suggest an unexpected regulatory interaction between the DnaA and DnaN proteins.
机译:缺少硫氧还蛋白超家族的三个成员,硫氧还蛋白1和2和戊二醛1的大肠杆菌菌株无法生长,该表型可能是由于细胞无法还原必需的核糖核苷酸还原酶所致。两类突变可以使这种菌株恢复生长。首先,我们分离出了抑制生长缺陷的蛋白质glutaredoxin 3的基因突变集合。值得注意的是,所有八个独立的突变都会改变相同的氨基酸,即蛋氨酸43,将其更改为缬氨酸,异亮氨酸或亮氨酸。从氨基酸改变的位置及其作用,我们认为这些改变改变了蛋白质,从而使其性质更接近于谷胱甘肽毒素1。第二种抑制多重突变菌株生长缺陷的方法是通过突变。 DNA复制基因dnaA和dnaN。这些突变显着增加了核糖核苷酸还原酶的表达,很可能是通过改变调节蛋白DnaA与核糖核苷酸还原酶启动子的相互作用来实现的。我们的结果表明,细胞中核糖核苷酸还原酶浓度的增加允许与戊二醛毒素3更有效地相互作用,从而恢复了脱氧核糖核苷酸的有效库。我们的研究提供了直接的证据,即核糖核苷酸还原酶是唯一需要我们菌株中缺少三种还原蛋白的必需酶。我们的结果还表明DnaA和DnaN蛋白之间存在意想不到的调控相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号