【24h】

Nitric oxide, oxidants, and protein tyrosine nitration

机译:一氧化氮,氧化剂和蛋白质酪氨酸硝化

获取原文
获取原文并翻译 | 示例
       

摘要

The occurrence of protein tyrosine nitration under disease conditions is now firmly established and represents a shift from the signal transducing physiological actions of .NO to oxidative and potentially pathogenic pathways. Tyrosine nitration is mediated by reactive nitrogen species such as peroxynitrite anion (ONOO-) and nitrogen dioxide (.NO2), formed as secondary products of .NO metabolism in the presence of oxidants including superoxide radicals (O-2(.-)), hydrogen peroxide (H2O2), and transition metal centers. The precise interplay between .NO and oxidants and the identification of the proximal intermediate(s) responsible for nitration in vivo have been under controversy. Despite the capacity of peroxynitrite to mediate tyrosine nitration in vitro, its role on nitration in vivo has been questioned, and alternative pathways, including the nitrite/H2O2/hemeperoxidase and transition metal-dependent mechanisms, have been proposed. A balanced analysis of existing evidence indicates that (i) different nitration pathways can contribute to tyrosine nitration in vivo, and (it) most, if not all, nitration pathways involve free radical biochemistry with carbonate radicals (CO3.-) and/or oxo-metal complexes oxidizing tyrosine to tyrosyl radical followed by the diffusion-controlled reaction with .NO2 to yield 3-nitrotyrosine. Although protein tyrosine nitration is a low-yield process in vivo, 3-nitrotyrosine has been revealed as a relevant biomarker of .NO-dependent oxidative stress; additionally, site-specific nitration focused on particular protein tyrosines may result in modification of function and promote a biological effect. Tissue distribution and quantitation of protein 3-nitrotyrosine, recognition of the predominant nitration pathways and individual identification of nitrated proteins in disease states open new avenues for the understanding and treatment of human pathologies. [References: 97]
机译:现在已经确定了疾病条件下蛋白质酪氨酸硝化的发生,这代表了从信号传导.NO的生理作用向氧化和潜在致病途径的转变。酪氨酸硝化反应由诸如过氧亚硝酸根阴离子(ONOO-)和二氧化氮(.NO2)的活性氮物质介导,它们是在存在超氧化物自由基(O-2(.-))的氧化剂存在下作为.NO代谢的副产物而形成的,过氧化氢(H2O2)和过渡金属中心。 NO与氧化剂之间的精确相互作用以及负责体内硝化的近端中间体的鉴定一直存在争议。尽管过氧亚硝酸盐具有体外介导酪氨酸硝化的能力,但人们对其在体内硝化中的作用提出了质疑,并提出了其他途径,包括亚硝酸盐/ H2O2 /过氧化氢酶和过渡金属依赖性机制。现有证据的平衡分析表明,(i)不同的硝化途径可促进体内酪氨酸硝化,并且(大多数)硝化途径涉及(即使不是全部)硝化途径与碳酸根(CO3.-)和/或羰基的自由基。 -金属络合物将酪氨酸氧化为酪氨酸基团,然后与.NO2进行扩散控制反应,生成3-硝基酪氨酸。尽管蛋白质酪氨酸硝化在体内是一个低产量的过程,但是3-硝基酪氨酸已被揭示为.NO依赖性氧化应激的相关生物标志物。另外,针对特定蛋白质酪氨酸的位点特异性硝化作用可能导致功能改变并促进生物学效应。蛋白质3-硝基酪氨酸的组织分布和定量,主要硝化途径的识别以及疾病状态下硝化蛋白质的个体鉴定为理解和治疗人类病理学开辟了新途径。 [参考:97]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号