首页> 外文学位 >Tyrosine nitration catalyzed by the metalloproteins copper-zinc superoxide dismutase, horseradish peroxidase, and myeloperoxidase.
【24h】

Tyrosine nitration catalyzed by the metalloproteins copper-zinc superoxide dismutase, horseradish peroxidase, and myeloperoxidase.

机译:金属蛋白铜锌超氧化物歧化酶,辣根过氧化物酶和髓过氧化物酶催化酪氨酸硝化。

获取原文
获取原文并翻译 | 示例

摘要

Nitrotyrosine has been found in many inflammatory and neurodegenerative diseases, but the identity of the nitrating agents remains controversial. This dissertation project evaluated nitration catalyzed by Cu,Zn superoxide dismutase (Cu,ZnSOD) and by peroxidases. Both enzymes utilized peroxynitrite (ONOO-) or hydrogen peroxide (H2O2) plus nitrite (NO2-) as substrates. Hydrogen peroxide is a product of superoxide dismutation. Peroxynitrite is formed by the reaction of nitric oxide (NO·) with superoxide (O 2·-), while nitrite is formed from reactions of either nitric oxide or peroxynitrite.;Mutations in Cu,ZnSOD have been linked to familial amyotrophic lateral sclerosis (ALS). Tyrosine nitration has been detected in both sporadic and familial ALS. Since Cu,ZnSOD is a known catalyst of peroxynitrite nitration of tyrosines, we tested Cu,ZnALS-SOD for this activity. We found peroxynitrite nitration catalysis by Cu,ZnALS-SOD was identical to wild-type Cu,ZnSOD. However, ALS-SODs have lower zinc affinity than wild-type SOD. Zinc-deficient SOD (Cu,ESOD) is a better catalyst of peroxynitrite nitration than Cu,ZnSOD. Hydrogen peroxide inactivated the binding of zinc to zinc-deficient SOD six times faster than it inactivated dismutation activity. Cu,ESOD dismutation activity was not protected by ascorbate, urate, or xanthine, which were all protective for Cu,ZnSOD. Consequently, oxidants can render zinc loss from ALS-SOD irreversible.;Myeloperoxidase (MPO) and horseradish peroxidase (HRP) were better peroxynitrite nitration catalysts than Cu,ZnSOD. Furthermore, MPO and HRP also catalyze nitration from hydrogen peroxide plus nitrite. This mechanism was independent of chloride and hypochlorous, acid. MPO was capable of catalyzing nitration of proteins in a tissue homogenate where competing targets of oxidation were also present. The peroxidase-generated nitrating agent was capable of crossing erythrocyte ghost membranes to nitrate internal proteins. Peroxidases could possibly form the nitrating species by oxidation of nitrite to peroxynitrous acid (ONOOH) by the addition of an OH group. Hydrogen peroxide and nitrite are more stable products of superoxide and nitric oxide that eluded formation of peroxynitrite. Since superoxide and nitric oxide are often co-induced in neutrophils, MPO could recycle accumulating hydrogen peroxide and nitrite into an additional nitrating agent.
机译:在许多炎性和神经退行性疾病中都发现了硝基酪氨酸,但硝化剂的身份仍存在争议。本项目评估了铜锌超氧化物歧化酶(Cu,ZnSOD)和过氧化物酶催化的硝化作用。两种酶都利用过氧亚硝酸盐(ONOO-)或过氧化氢(H2O2)加亚硝酸盐(NO2-)作为底物。过氧化氢是超氧化物歧化的产物。过氧亚硝酸盐是由一氧化氮(NO·)与超氧化物(O 2·-)反应形成的,而亚硝酸盐则是由一氧化氮或过氧亚硝酸盐的反应形成的。 ALS)。在散发性和家族性ALS中均检测到酪氨酸硝化。由于Cu,ZnSOD是酪氨酸过亚硝酸盐硝化的已知催化剂,因此我们测试了Cu,ZnALS-SOD的这种活性。我们发现Cu,ZnALS-SOD催化过氧亚硝酸盐催化与野生型Cu,ZnSOD相同。但是,ALS-SOD的锌亲和力低于野生型SOD。缺锌的SOD(Cu,ESOD)是比Cu,ZnSOD更好的过氧亚硝酸盐硝化催化剂。过氧化氢使锌与缺锌的SOD的结合失活的速度比失活活性快六倍。 Cu,ESOD歧化活性不受抗坏血酸盐,尿酸盐或黄嘌呤的保护,它们均对Cu,ZnSOD具有保护作用。因此,氧化剂会使ALS-SOD中的锌损失不可逆转。髓过氧化物酶(MPO)和辣根过氧化物酶(HRP)是比Cu,ZnSOD更好的过氧亚硝酸盐硝化催化剂。此外,MPO和HRP还催化过氧化氢加亚硝酸盐的硝化作用。该机理与氯化物和次氯酸无关。 MPO能够催化组织匀浆中蛋白质的硝化作用,该组织匀浆中也存在竞争性的氧化靶标。过氧化物酶产生的硝化剂能够使红血球鬼膜穿过硝酸盐内部蛋白质。过氧化酶可能通过加成OH基团将亚硝酸盐氧化成过氧亚硝酸(ONOOH)而形成硝化物种。过氧化氢和亚硝酸盐是超氧化物和一氧化氮的更稳定的产物,可避免形成过氧亚硝酸盐。由于中性粒细胞中通常会共同诱导超氧化物和一氧化氮,因此MPO可以将积累的过氧化氢和亚硝酸盐再循环到其他硝化剂中。

著录项

  • 作者

    Sampson, Jacinda Beth.;

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Biochemistry.;Neurosciences.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号