首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive.
【24h】

Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive.

机译:相空间的渐近尺度不变占有使得熵Sq扩展。

获取原文
获取原文并翻译 | 示例
       

摘要

Phase space can be constructed for N equal and distinguishable subsystems that could be probabilistically either weakly correlated or strongly correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy S(BG) identical with -k Sigma(i) p(i) ln p(i) to be extensive, i.e., S(BG)(N) proportional, variant N for N --> infinity. In particular, if they are independent, S(BG) is strictly additive, i.e., S(BG)(N) = NS(BG)(1), for allN. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy S(q) identical with k[1 - Sigma(i) p(q)(i)]/(q - 1) (with S(1) = S(BG)) for some special value of q not equal 1 to be the one which is extensive [i.e., S(q)(N) proportional, variant N for N --> infinity]. Another concept which is relevant is strict or asymptotic scale-freedom (or scale-invariance), defined as the situation for which all marginal probabilities of the N-system coincide or asymptotically approach (for N --> infinity) the joint probabilities of the (N - 1)-system. If each subsystem is a binary one, scale-freedom is guaranteed by what we hereafter refer to as the Leibnitz rule, i.e., the sum of two successive joint probabilities of the N-system coincides or asymptotically approaches the corresponding joint probability of the (N - 1)-system. The kinds of interplay of these various concepts are illustrated in several examples. One of them justifies the title of this paper. We conjecture that these mechanisms are deeply related to the very frequent emergence, in natural and artificial complex systems, of scale-free structures and to their connections with nonextensive statistical mechanics. Summarizing, we have shown that, for asymptotically scale-invariant systems, it is S(q) with q not equal 1, and not S(BG), the entropy which matches standard, clausius-like, prescriptions of classical thermodynamics.
机译:可以为N个相等且可区分的子系统构建相空间,这些子系统可以概率性地弱关联或强关联。如果它们是局部相关的,我们期望与-k Sigma(i)p(i)ln p(i)相同的Boltzmann-Gibbs熵S(BG)是广泛的,即S(BG)(N)成比例变化N代表N->无穷大。特别是,如果它们是独立的,则S(BG)是严格加法的,即对于所有N,S(BG)(N)= NS(BG)(1)。但是,如果子系统是全局相关的,那么我们期望对于一大类系统,熵S(q)等于k [1-Sigma(i)p(q)(i)] /(q-1)(对于不等于1的q的某个特殊值,S(1)= S(BG))将是一个大的值[即S(q)(N)成比例,N为N->无穷大的变体N]。另一个相关的概念是严格的或渐近的尺度自由度(或尺度不变性),定义为N系统所有边际概率一致或渐近接近(对于N->无穷大)的联合概率的情况。 (N-1)-系统。如果每个子系统都是二元子系统,则通过下文称为莱布尼茨定律的方法来保证无标度,即,N系统的两个连续联合概率之和重合或渐近地接近(N -1)-系统。这些不同概念的相互作用类型在几个示例中进行了说明。其中之一证明了本文的标题。我们推测,这些机制与无标度结构在自然和人为复杂系统中的频繁出现及其与非广泛统计机制的联系密切相关。总而言之,我们已经表明,对于渐近的尺度不变系统,它是q(不等于1)的S(q),而不是S(BG),它与经典的热力学标准,类似于克劳修斯的处方相匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号