首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior.
【24h】

Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior.

机译:经典晶体生长理论的机理解释了石英和硅酸盐的溶解行为。

获取原文
获取原文并翻译 | 示例
       

摘要

The central control of mineral weathering rates on biogeochemical systems has motivated studies of dissolution for more than 50 years. A complete physical picture that explains widely observed variations in dissolution behavior is lacking, and some data show apparent serious inconsistencies that cannot be explained by the largely empirical kinetic "laws." Here, we show that mineral dissolution can, in fact, be understood through the same mechanistic theory of nucleation developed for mineral growth. In principle, this theory should describe dissolution but has never been tested. By generalizing nucleation rate equations to include dissolution, we arrive at a model that predicts how quartz dissolution processes change with undersaturation from step retreat, to defect-driven and homogeneous etch pit formation. This finding reveals that the "salt effect," recognized almost 100 years ago, arises from a crossover in dominant nucleation mechanism to greatly increase step density. The theory also explains thedissolution kinetics of major weathering aluminosilicates, kaolinite and K-feldspar. In doing so, it provides a sensible origin of discrepancies reported for the dependence of kaolinite dissolution and growth rates on saturation state by invoking a temperature-activated transition in the nucleation process. Although dissolution by nucleation processes was previously unknown for oxides or silicates, our mechanism-based findings are consistent with recent observations of dissolution (i.e., demineralization) in biological minerals. Nucleation theory may be the missing link to unifying mineral growth and dissolution into a mechanistic and quantitative framework across the continuum of driving force.
机译:50多年来,对生物地球化学系统中矿物风化速率的集中控制已激发了溶出度的研究。缺乏完整的物理图景来解释广泛观察到的溶解行为变化,并且一些数据显示出明显的严重矛盾,这在很大程度上不能通过经验动力学“定律”来解释。在这里,我们表明,矿物溶解实际上可以通过为矿物生长开发的相同的成核机理理论来理解。原则上,该理论应描述溶出度,但尚未经过检验。通过将成核速率方程式概括为包括溶蚀,我们得到了一个模型,该模型可以预测石英的溶蚀过程如何随着欠饱和而发生变化,从分步退缩到缺陷驱动的均匀腐蚀坑形成。这一发现表明,将近100年前就认识到的“盐效应”起因于主要成核机制的交叉,从而大大增加了步长密度。该理论还解释了主要风化的铝硅酸盐,高岭石和钾长石的溶解动力学。这样做,通过在成核过程中调用温度激活的转变,提供了据报道的高岭石溶解和生长速率对饱和状态的依赖性的差异的合理起源。尽管以前尚不知道氧化物或硅酸盐是通过成核过程溶解的,但我们基于机理的发现与最近在生物矿物中溶解(即脱矿物质)的观察结果一致。成核理论可能是贯穿整个驱动力将矿物质生长和溶解统一到机械和定量框架中的缺失环节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号