首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >A modular microfluidic architecture for integrated biochemical analysis
【24h】

A modular microfluidic architecture for integrated biochemical analysis

机译:用于集成生化分析的模块化微流控架构

获取原文
获取原文并翻译 | 示例
       

摘要

Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb2+ (lead) at a sensitivity of 500 nM in < 1 nl of solution.
机译:提出了基于模块化体系结构的微流体芯片实验室(LOC)系统。该体系结构在两个级别上进行了概念化:单芯片级别和多芯片模块(MCM)系统级别。在单个芯片级别,多层方法将属于两个基本类别的组件隔离:被动流体组件(通道和反应室)和主动机电控制结构(传感器和执行器)。明确区分这种区别是为了简化开发过程并最小化成本。属于这两个类别的组件分别构建在不同的物理层上,并且可以通过跨层互连进行流体通信。承载机电控制结构的芯片称为微流面包板(FBB)。通过将由流体路由通道和反应器的定制布置组成的芯片(无源芯片)连接到FBB,可以构造单个LOC模块。通过在具有标准资源配置的FBB上使用不同的无源芯片,可以实现许多不同的LOC功能。可以将多个模块互连以形成更大的LOC系统(MCM级别)。我们通过开发用于两个单独的生化应用程序的系统证明了该体系结构的实用性:一个用于检测癌症的蛋白质标记,另一个用于检测金属离子。在第一种情况下,通过在并行MCM系统上使用基于纳米颗粒的生物条形码协议,以500 aM的浓度检测到游离的前列腺特异性抗原。在第二种情况下,我们使用基于DNAzyme的生物传感器以小于1 nl的溶液以500 nM的灵敏度鉴定Pb2 +(铅)的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号