首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures
【24h】

SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures

机译:SNOSID,一种蛋白质组学方法,用于鉴定复杂蛋白质混合物中的半胱氨酸S-亚硝基化位点

获取原文
获取原文并翻译 | 示例
       

摘要

Reversible addition of NO to Cys-sulfur in proteins, a modification termed S-nitrosylation, has emerged as a ubiquitous signaling mechanism for regulating diverse cellular processes. A key first-step toward elucidating the mechanism by which S-nitrosylation modulates a protein's function is specification of the targeted Cys (SNO-Cys) residue. To date, S-nitrosylation site specification has been laboriously tackled on a protein-by-protein basis. Here we describe a high-throughput proteomic approach that enables simultaneous identification of SNO-Cys sites and their cognate proteins in complex biological mixtures. The approach, termed SNOSID (SNO Site Identification), is a modification of the biotin-swap technique [Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. (2001) Nat. Cell. Biol. 3, 193-197], comprising biotinylation of protein SNO-Cys residues, trypsinolysis, affinity purification of biotinylated-peptides, and amino acid sequencing by liquid chromatography tandem MS. With this approach, 68 SNO-Cys sites were specified on 56 distinct proteins in S-nitrosoglutathione-treated (2-10 μM) rat cerebellum lysates. In addition to enumerating these S-nitrosylation sites, the method revealed endogenous SNO-Cys modification sites on cerebellum proteins, including α-tubulin, β-tubulin, GAPDH, and dihydropyri-midinase-related protein-2. Whereas these endogenous SNO proteins were previously recognized, we extend prior knowledge by specifying the SNO-Cys modification sites. Considering all 68 SNO-Cys sites identified, a machine learning approach failed to reveal a linear Cys-flanking motif that predicts stable transnitrosation by S-nitrosoglutathione under test conditions, suggesting that undefined 3D structural features determine S-nitrosylation specificity. SNOSID provides the first effective tool for unbiased elucidation of the SNO proteome, identifying Cys residues that undergo reversible S-nitrosylation.
机译:NO向蛋白质中的Cys-硫中可逆地添加(一种称为S-亚硝基化的修饰)已经作为调节各种细胞过程的普遍信号传导机制而出现。阐明S-亚硝基化调节蛋白质功能的机制的关键第一步是确定目标Cys(SNO-Cys)残基。迄今为止,已经在逐个蛋白质的基础上努力地解决了S-亚硝基化位点的规定。在这里,我们描述了一种高通量蛋白质组学方法,该方法能够同时识别复杂生物混合物中的SNO-Cys位点及其同源蛋白质。称为SNOSID(SNO站点识别)的方法是对生物素交换技术的一种修改[Jaffrey,S.R.,Erdjument-Bromage,H.,Ferris,C.D.,Tempst,P.&Snyder,S.H.(2001)Nat。细胞。生物学3,193-197],包括蛋白SNO-Cys残基的生物素化,胰蛋白酶解,生物素化肽的亲和纯化以及通过液相色谱串联MS进行的氨基酸测序。通过这种方法,在S-亚硝基谷胱甘肽处理过的(2-10μM)大鼠小脑裂解液中的56种不同蛋白质上指定了68个SNO-Cys位点。除了枚举这些S-亚硝基化位点外,该方法还揭示了小脑蛋白质上的内源性SNO-Cys修饰位点,包括α-微管蛋白,β-微管蛋白,GAPDH和二氢嘧啶-midinase相关蛋白2。尽管这些内源性SNO蛋白是先前公认的,但我们通过指定SNO-Cys修饰位点来扩展现有知识。考虑到所有68个SNO-Cys位点,机器学习方法未能揭示线性的Cys侧翼基序,该基序预测在测试条件下S-亚硝基谷胱甘肽稳定的亚硝化作用,表明未定义的3D结构特征决定了S-亚硝基化的特异性。 SNOSID为公正鉴定SNO蛋白质组提供了第一个有效工具,可鉴定经历可逆S-亚硝基化作用的Cys残基。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号