【24h】

Protein folding by zipping and assembly

机译:通过压缩和组装折叠蛋白质

获取原文
获取原文并翻译 | 示例
           

摘要

How do proteins fold so quickly? Some denatured proteins fold to their native structures in only microseconds, on average, implying that there is a folding "mechanism," i.e., a particular set of events by which the protein short-circuits a broader conformational search. Predicting protein structures using atomically detailed physical models is currently challenging. The most definitive proof of a putative folding mechanism would be whether it speeds up protein structure prediction in physical models. In the zipping and assembly (ZA) mechanism, local structuring happens first at independent sites along the chain, then those structures either grow (zip) or coalescence (assemble) with other structures. Here, we apply the ZA search mechanism to protein native structure prediction by using the AMBER96 force field with a generalized Born/surface area implicit solvent model and sampling by replica exchange molecular dynamics. Starting from open denatured conformations, our algorithm, called the ZA method, converges to an average of 2.2 A from the Protein Data Bank native structures of eight of nine proteins that we tested, which ranged from 25 to 73 aa in length. In addition, experimental Φ values, where available on these proteins, are consistent with the predicted routes. We conclude that ZA is a viable model for how proteins physically fold. The present work also shows that physics-based force fields are quite good and that physics-based protein structure prediction may be practical, at least for some small proteins.
机译:蛋白质如何快速折叠?平均而言,一些变性的蛋白质仅在几微秒内折叠到其天然结构,这意味着存在折叠的“机制”,即,一组特定事件,通过该事件,蛋白质使更广泛的构象搜索短路。目前,使用原子详细的物理模型预测蛋白质结构具有挑战性。推定的折叠机制最明确的证明是它是否会加快物理模型中蛋白质结构的预测。在压缩和组装(ZA)机制中,局部结构化首先发生在链的独立位置,然后这些结构与其他结构一起生长(压缩)或合并(组装)。在这里,我们通过使用带有广义Born /表面积隐式溶剂模型的AMBER96力场,并通过副本交换分子动力学进行采样,将ZA搜索机制应用于蛋白质天然结构预测。从开放变性构象开始,我们的算法称为ZA方法,从我们测试的9种蛋白质中的8种蛋白质的蛋白质数据库的天然结构收敛到平均2.2 A,长度范围为25至73氨基酸。此外,在这些蛋白质上可获得的实验Φ值与预测的途径一致。我们得出结论,ZA是蛋白质如何物理折叠的可行模型。本工作还表明,基于物理学的力场非常好,并且基于物理学的蛋白质结构预测可能是实用的,至少对于某些小蛋白质而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号