首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation
【24h】

The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation

机译:糖蛋白折叠和降解的N-聚糖依赖性内质网质量控制因子的演变

获取原文
获取原文并翻译 | 示例
       

摘要

Asn-linked glycans (N-glycans) play important roles in the quality control (QC) of glycoprotein folding in the endoplasmic reticulum (ER) lumen and in ER-associated degradation (ERAD) of proteins by cytosolic proteasomes. A UDP-Glc:glycoprotein glucosyltransferase glucosylates N-glycans of misfolded proteins, which are then bound and refolded by calreticulin and/or calnexin in association with a protein disulfide isomerase. Alternatively, an α-1,2-mannosidase (Mns1) and mannosidase-like proteins (ER degradation-enhancing α-mannosidase-like proteins 1, 2, and 3) are part of a process that results in the dislocation of misfolded glycoproteins into the cytosol, where proteins are degraded in the proteasome. Recently we found that numerous protists and fungi contain 0-11 sugars in their N-glycan precursors versus 14 sugars in those of animals, plants, fungi, and Dictyostelium. Our goal here was to determine what effect N-glycan precursor diversity has on N-glycan-dependent QC systems of glycoprotein folding and ERAD. N-glycan-dependent QC of folding (UDP-Glc:glycoprotein glucosyltransferase, calreticulin, and/or calnexin) was present and active in some but not all protists containing at least five mannose residues in their N-glycans and was absent in protists lacking Man. In contrast, N-glycan-dependent ERAD appeared to be absent from the majority of protists. However, Trypanosoma and Trichomonas genomes predicted ER degradation-enhancing α-mannosidase-like protein and Mns1 orthologs, respectively, each of which had α-mannosidase activity in vitro. Phylogenetic analyses suggested that the diversity of N-glycan-dependent QC of glycoprotein folding (and possibly that of ERAD) was best explained by secondary loss. We conclude that N-glycan precursor length has profound effects on N-glycan-dependent QC of glycoprotein folding and ERAD.
机译:Asn连接的聚糖(N-聚糖)在内质网(ER)内腔中糖蛋白折叠的质量控制(QC)和胞质蛋白酶体对蛋白质的ER相关降解(ERAD)中起重要作用。 UDP-Glc:糖蛋白葡糖基转移酶将错误折叠的蛋白的N-聚糖葡糖基化,然后结合蛋白二硫键异构酶与钙网蛋白和/或钙连蛋白结合并重新折叠。或者,α-1,2-甘露糖苷酶(Mns1)和甘露糖苷酶样蛋白(ER降解增强型α-甘露糖苷酶样蛋白1、2和3)是导致错折叠的糖蛋白错位成溶质,蛋白质在蛋白酶体中降解。最近,我们发现许多原生生物和真菌在其N-聚糖前体中都含有0-11糖,而在动物,植物,真菌和双歧杆菌中则含有14糖。我们的目标是确定N-聚糖前体多样性对糖蛋白折叠和ERAD的N-聚糖依赖性QC系统的影响。 N-聚糖依赖性折叠的QC(UDP-Glc:糖蛋白葡糖基转移酶,钙网蛋白和/或Calnexin)存在于某些Nt聚糖中且并非全部具有至少5个甘露糖残基的Protists并具有活性,而缺少这些的Qt缺乏男子。相反,大多数原生生物似乎不存在依赖N-聚糖的ERAD。但是,锥虫和毛滴虫基因组分别预测了ER降解增强的α-甘露糖苷酶样蛋白和Mns1直向同源物,它们在体外均具有α-甘露糖苷酶活性。系统发生学分析表明,糖蛋白折叠的N-聚糖依赖性QC的多样性(可能是ERAD的多样性)最好由继发损失来解释。我们得出的结论是,N-聚糖前体长度对糖蛋白折叠和ERAD的N-聚糖依赖性QC具有深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号