【24h】

Memory Traces In Dynamical Systems

机译:动态系统中的内存跟踪

获取原文
获取原文并翻译 | 示例
       

摘要

To perform nontrivial, real-time computations on a sensory input stream, biological systems must retain a short-term memory trace of their recent inputs. It has been proposed that generic high-dimensional dynamical systems could retain a memory trace for past inputs in their current state. This raises important questions about the fundamental limits of such memory traces and the properties required of dynamical systems to achieve these limits. We address these issues by applying Fisher information theory to dynamical systems driven by time-dependent signals corrupted by noise. We introduce the Fisher Memory Curve (FMC) as a measure of the signal-to-noise ratio (SNR) embedded in the dynamical state relative to the input SNR. The integrated FMC indicates the total memory capacity. We apply this theory to linear neuronal networks and show that the capacity of networks with normal connectivity matrices is exactly 1 and that of any network of N neurons is, at most, N. A nonnormal network achieving this bound is subject to stringent design constraints: It must have a hidden feedforward architecture that superlinearly amplifies its input for a time of order N, and the input connectivity must optimally match this architecture. The memory capacity of networks subject to saturating nonlinearities is further limited, and cannot exceed N~(1/2). This limit can be realized by feedforward structures with divergent fan out that distributes the signal across neurons, thereby avoiding saturation. We illustrate the generality of the theory by showing that memory in fluid systems can be sustained by transient non-normal amplification due to convective instability or the onset of turbulence.
机译:为了对感官输入流执行非平凡的实时计算,生物系统必须保留其最近输入的短期记忆轨迹。已经提出,通用的高维动力系统可以在其当前状态下为过去的输入保留存储器轨迹。这就引起了关于这样的存储轨迹的基本限制以及动态系统实现这些限制所需的属性的重要问题。我们通过将Fisher信息理论应用于由受噪声破坏的时间相关信号驱动的动力系统来解决这些问题。我们引入了费舍尔记忆曲线(FMC),以衡量相对于输入SNR处于动态状态的信噪比(SNR)。集成的FMC指示总内存容量。我们将此理论应用于线性神经元网络,并证明具有正常连通性矩阵的网络的容量恰好为1,而任何N个神经元网络的容量最多为N。要达到此界限的非正常网络会受到严格的设计约束:它必须具有隐藏的前馈体系结构,该体系会在N阶时间内超线性地放大其输入,并且输入连接性必须与该体系结构最佳匹配。受饱和非线性影响的网络的存储容量进一步受到限制,并且不能超过N〜(1/2)。这个限制可以通过前馈结构实现,该结构具有发散的扇出,可以在神经元之间分布信号,从而避免饱和。我们通过显示由于对流不稳定性或湍流的出现,瞬态非正态放大可以维持流体系统中的记忆,从而说明了该理论的普遍性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号