【24h】

Mechanoenzymatics of titin kinase

机译:肌动蛋白激酶的机械酶学

获取原文
获取原文并翻译 | 示例
       

摘要

Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of musclein response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent auto-phosphorylation and substrate turnover.
机译:对机械应力的生物学反应需要应变敏感分子,其机械诱导的构象变化会传递给介导细胞和组织特性变化的信号级联。在脊椎动物的肌肉中,巨大的弹性蛋白滴定蛋白通过其在肌节M带的C末端激酶结构域(TK)参与应变感测,并有助于肌肉蛋白适应机械应变的变化。 TK在独特的双重自动抑制机制中受到C末端调节尾巴的调节,从而阻止ATP结合位点和酪氨酸对催化碱基的自动抑制。为了接近ATP结合位点和自身抑制酪氨酸的磷酸化,需要去除C端自身抑制尾巴。在这里,我们使用基于原子力显微镜的单分子力谱,分子动力学模拟和酶学研究应变诱导人类TK激活过程中的构象变化。我们表明机械应变激活ATP结合之前的结构体结构域的展开,并且TK可以因此充当生物力传感器。此外,我们确定了在低力下机械释放TK的自抑制作用的步骤,从而导致了共底物ATP的结合并引发了酶的后续自动磷酸化和底物周转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号