首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface
【24h】

Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface

机译:柱状疏水表面上Cassie和Wenzel状态的共存和过渡

获取原文
获取原文并翻译 | 示例
           

摘要

Water droplets on rugged hydrophobic surfaces typically exhibit one of the following two states: (ⅰ) the Wenzel state [Wenzel RN (1936) Ind Eng Chem 28:988-994] in which water droplets are in full contact with the rugged surface (referred as the wetted contact) or (ⅱ) the Cassie state [Cassie, ABD, Baxter S (1944) Trans Faraday Soc 40:546-551] in which water droplets are in contact with peaks of the rugged surface as well as the "air pockets" trapped between surface grooves (the composite contact). Here, we show large-scale molecular dynamics simulation of transition between Wenzel state and Cassie state of water droplets on a periodic nanopillared hydrophobic surface. Physical conditions that can strongly affect the transition include the height of nanopillars, the spacing between pillars, the intrinsic contact angle, and the impinging velocity of water nanodroplet ("raining" simulation). There exists a critical pillar height beyond which water droplets on the pillared surface can be either in the Wenzel state or in the Cassie state, depending on their initial location. The free-energy barrier separating the Wenzel and Cassie state was computed on the basis of a statistical-mechanics method and kinetic raining simulation. The barrier ranges from a few tenths of k_BT_O (where k_B is the Boltzmann constant, and T_O is the ambient temperature) for a rugged surface at the critical pillar height to ≈8 k_BJ_O for the surface with pillar height greater than the length scale of water droplets. For a highly rugged surface, the barrier from the Wenzel-to-Cassie state is much higher than from Cassie-to-Wenzel state. Hence, once a droplet is trapped deeply inside the grooves, it would be much harder to relocate on top of high pillars.
机译:粗糙疏水表面上的水滴通常表现出以下两种状态之一:(ⅰ)Wenzel状态[Wenzel RN(1936)Ind Eng Chem 28:988-994],其中水滴与粗糙表面完全接触(称为或(ⅱ)卡西状态(Cassie,ABD,Baxter S(1944)Trans Faraday Soc 40:546-551),其中水滴与凹凸不平的表面峰以及“空气”接触。凹槽”(复合触点)之间。在这里,我们显示了周期性纳米柱疏水表面上水滴的Wenzel状态和Cassie状态之间过渡的大规模分子动力学模拟。可能会严重影响过渡的物理条件包括纳米柱的高度,柱子之间的间距,固有接触角和水纳米滴的撞击速度(“降雨”模拟)。存在一个临界的柱高,超过此高度,柱表面上的水滴可以处于Wenzel状态或Cassie状态,具体取决于其初始位置。基于统计力学方法和动力学降雨模拟,计算了将Wenzel和Cassie态分开的自由能垒。壁垒的范围从十分之一的k_BT_O(其中k_B是玻尔兹曼常数,T_O是环境温度)到临界柱高处的崎surface表面到柱高大于水的长度尺度的表面的≈8k_BJ_O飞沫。对于高度凹凸不平的表面,从Wenzel到Cassie状态的屏障比从Cassie到Wenzel状态的屏障高得多。因此,一旦液滴深陷于凹槽内,将很难重新定位在高支柱的顶部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号