首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Discovery of the recoverable high-pressure iron oxide Fe_4O_5
【24h】

Discovery of the recoverable high-pressure iron oxide Fe_4O_5

机译:发现可回收的高压氧化铁Fe_4O_5

获取原文
获取原文并翻译 | 示例
       

摘要

Phases of the iron-oxygen binary system are significant to most scientific disciplines, directly affecting planetary evolution, life, and technology. Iron oxides have unique electronic properties and strongly interact with the environment, particularly through redox reactions. The iron-oxygen phase diagram therefore has been among the most thoroughly investigated, yet it still holds striking findings. Here, we report the discovery of an iron oxide with formula Fe_4O_5, synthesized at high pressure and temperature. The previously undescribed phase, stable from 5 to at least 30 GPa, is recoverable to ambient conditions. First-principles calculations confirm that the iron oxide here described is energetically more stable than FeO + Fe_3O_4 at pressure greater than 10 GPa. The calculated lattice constants, equation of states, and atomic coordinates are in excellent agreement with experimental data, confirming the synthesis of Fe_4O_5. Given the conditions of stability and its composition, Fe_4O_5 is a plausible accessory mineral of the Earth's upper mantle. The phase has strong ferrimagnetic character comparable to magnetite. The ability to synthesize the material at accessible conditions and recover it at ambient conditions, along with its physical properties, suggests a potential interest in Fe_4O_5 for technological applications.
机译:铁-氧二元体系的阶段对大多数科学学科而言都很重要,直接影响着行星的演化,生命和技术。氧化铁具有独特的电子特性,并且特别是通过氧化还原反应与环境发生强烈相互作用。因此,铁-氧相图已被最深入地研究,但仍具有惊人的发现。在这里,我们报告了在高压和高温下合成的具有式Fe_4O_5的氧化铁的发现。从5 GPa到至少30 GPa稳定的先前未描述的相可以恢复到环境条件。第一性原理计算证实,此处所述的氧化铁在大于10 GPa的压力下在能量上比FeO + Fe_3O_4更稳定。计算出的晶格常数,状态方程和原子坐标与实验数据非常吻合,证实了Fe_4O_5的合成。考虑到稳定性及其组成的条件,Fe_4O_5是地球上地幔的一种可能的辅助矿物。该相具有与磁铁矿相当的强亚铁磁特性。在可及的条件下合成材料并在环境条件下将其回收的能力及其物理性质,表明对技术应用中的Fe_4O_5有潜在的兴趣。

著录项

  • 来源
  • 作者单位

    High Pressure Science and Engineering Center, University of Nevada, Las Vegas, NV 89154,Department of Physics and Astronomy, University of Nevada,Las Vegas, NV 89154;

    GeoSoilEnviroCARS, Center for Advanced Radiation Sources, University of Chicago, Argonne, IL 60439;

    Department of Physics and Astronomy, University of Nevada,Las Vegas, NV 89154;

    High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, IL 60439;

    Gedsciences, University of Arizona, Tucson, AZ 85721-0077;

    Department of Chemistry, University of Nevada, Las Vegas, NV 89154;

    GeoSoilEnviroCARS, Center for Advanced Radiation Sources, University of Chicago, Argonne, IL 60439;

    High Pressure Science and Engineering Center, University of Nevada, Las Vegas, NV 89154,Department of Physics and Astronomy, University of Nevada,Las Vegas, NV 89154;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:41:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号