首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress
【24h】

Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress

机译:必不可少的染色质重塑复合物上的位点特异性乙酰化标记可增强对复制压力的抵抗力

获取原文
获取原文并翻译 | 示例
       

摘要

Recent work has identified several posttranslational modifications (PTMs) on chromatin-remodeling complexes. Compared with our understanding of histone PTMs, significantly less is known about the functions of PTMs on remodeling complexes, because identification of their specific roles often is hindered by the presence of redundant pathways. Remodels the Structure of Chromatin (RSC) is an essential, multifunctional ATP-dependent chromatin-remodeling enzyme of Saccharomyces cerevisiae that preferentially binds acet-ylated nucleosomes. RSC is itself acetylated by Gcn5 on lysine 25 (K25) of its Rsc4 subunit, adjacent to two tandem bromodomains. It has been shown that an intramolecular interaction between the acetylation mark and the proximal bromodomain inhibits binding of the second bromodomain to acetylated histone H3 tails. We report here that acetylation does not significantly alter the catalytic activity of RSC or its ability to recognize histone H3-acetylated nucleosomes preferentially in vitro. However, we find that Rsc4 acetylation is crucial for resistance to DNA damage in vivo. Epi-static miniarray profiling of the rsc4-K25R mutant reveals an interaction with mutants in the INO80 complex, a mediator of DNA damage and replication stress tolerance. In the absence of a core INO80 subunit, rsc4-K25R mutants display sensitivity to hydroxy-urea and delayed S-phase progression under DNA damage. Thus, Rsc4 helps promote resistance to replication stress, and its single acetylation mark regulates this function. These studies offer an example of acetylation of a chromatin-remodeling enzyme controlling a biological output of the system rather than regulating its core enzymatic properties.
机译:最近的工作已经确定了染色质重塑复合物的几种翻译后修饰(PTM)。与我们对组蛋白PTM的理解相比,人们对PTM在重塑复合物上的功能的了解要少得多,因为对它们特定作用的鉴定通常会受到多余途径的阻碍。重塑染色质(RSC)的结构是酿酒酵母必不可少的,多功能的ATP依赖型染色质重塑酶,可优先结合乙酰化核小体。 RSC本身在其Rsc4亚基的赖氨酸25(K25)上被Gcn5乙酰化,与两个串联溴结构域相邻。已经表明,乙酰化标记和近端溴结构域之间的分子内相互作用抑制了第二溴结构域与乙酰化的组蛋白H3尾巴的结合。我们在这里报告乙酰化不会显着改变RSC的催化活性或优先识别组蛋白H3乙酰化核小体的能力。但是,我们发现Rsc4乙酰化对于体内抗DNA损伤至关重要。 rsc4-K25R突变体的上位静态微阵列分析揭示了与INO80复合体中突变体的相互作用,INO80复合体是DNA损伤和复制应激耐受的介质。在没有核心INO80亚基的情况下,rsc4-K25R突变体在DNA损伤下对羟基脲表现出敏感性,并延迟了S期进程。因此,Rsc4有助于增强对复制压力的抵抗力,并且其单个乙酰化标记调节该功能。这些研究提供了染色质重塑酶乙酰化的实例,该酶控制系统的生物输出而不是调节其核心酶学性质。

著录项

  • 来源
  • 作者单位

    Departments of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158,Departments of Tetrad Graduate Program,University of California, San Francisco, CA, 94158;

    Departments of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158;

    Departments of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158;

    Departments of Cellular and Molecular Pharmacology,University of California, San Francisco, CA, 94158;

    Departments of Cellular and Molecular Pharmacology,University of California, San Francisco, CA, 94158;

    Departments of Pharmaceutical Chemistry,University of California, San Francisco, CA, 94158;

    Departments of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158;

    Center for Gene Regulation, Department of Biochemistry and Molecular Biology,Pennsylvania State University, University Park, PA 16802;

    Departments of Pharmaceutical Chemistry,University of California, San Francisco, CA, 94158;

    Departments of Tetrad Graduate Program,University of California, San Francisco, CA, 94158;

    Departments of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158;

    Departments of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:40:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号