首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Global CO_2 rise leads to reduced maximum stomatal conductance in Florida vegetation
【24h】

Global CO_2 rise leads to reduced maximum stomatal conductance in Florida vegetation

机译:全球CO_2上升导致佛罗里达植被最大气孔导度降低

获取原文
获取原文并翻译 | 示例
           

摘要

A principle response of C3 plants to increasing concentrations of atmospheric CO_2 (CO_2) is to reduce transpirational water loss by decreasing stomatal conductance (g_s) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate. Therefore, it is important to determine the adaptation of vegetation to the expected anthropogenic rise in CO_2. Short-term stomatal opening-closing responses of vegetation to increasing CO_2 are described by free-air carbon enrichments growth experiments, and evolutionary adaptations are known from the geological record. However, to date the effects of decadal to centennial CO_2 perturbations on stomatal conductance are still largely unknown. Here we reconstruct a 34% (±12%) reduction in maximum stomatal conductance (g_(smax)) per 100 ppm CO_2 increase as a result of the adaptation in stomatal density (D) and pore size at maximal stomatal opening (a_(max)) of nine common species from Florida over the past 150 y. The species-specific g_(smax) values are determined by different evolutionary development, whereby the angiosperms sampled generally have numerous small stomata and high g_(smax), and the conifers and fern have few large stomata and lower g_(smax). Although angiosperms and conifers use different D and a_(max) adaptation strategies, our data show a coherent response in g_(smax) to CO_2 rise of the past century. Understanding these adaptations of C3 plants to rising CO_2 after decadal to centennial environmental changes is essential for quantification of plant physiological forcing at time-scales relevant for global warming, and they are likely to continue until the limits of their phenotypic plasticity are reached.
机译:C3植物对大气中CO_2(CO_2)浓度升高的主要反应是通过降低气孔导度(g_s)来减少蒸腾作用的水分流失,并同时提高同化率。通过这种适应,植被具有改变水文和气候的能力。因此,确定植被对预期的人为CO_2升高的适应性很重要。自由空气碳富集生长实验描述了植被对增加的CO_2的短期气孔打开-关闭响应,并且从地质记录中知道了进化适应性。然而,迄今为止,十年至百年的CO_2扰动对气孔导度的影响仍是未知之数。在这里,由于气孔密度(D)和最大气孔开口处的孔径的适应性变化(a_(max),每100 ppm CO_2增加,最大气孔导度(g_(smax))降低了34%(±12%) ))在过去150年中来自佛罗里达的9种常见物种。特定物种的g_(smax)值是由不同的进化发育决定的,因此被采样的被子植物通常有许多小气孔和高g_(smax),而针叶树和蕨类植物的大气孔却很少,而g_(smax)较低。尽管被子植物和针叶树使用不同的D和a_(max)适应策略,但我们的数据显示,在过去一个世纪中,g_(smax)对CO_2上升的响应是一致的。在十年到百年的环境变化之后,了解C3植物对CO_2上升的这些适应性对于量化与全球变暖有关的时间尺度上的植物生理强迫至关重要,并且它们可能会持续到表型可塑性达到极限为止。

著录项

  • 来源
  • 作者单位

    Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands;

    Department of Environmental Sciences, Copernicus Institute, Utrecht University, 3508 TC, Utrecht, The Netherlands;

    Department of Environmental Sciences, Copernicus Institute, Utrecht University, 3508 TC, Utrecht, The Netherlands;

    Department of Biology, Indiana University, Bloomington, IN 47405;

    Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands;

    Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cuticular analysis; subtropical vegetation;

    机译:表皮分析亚热带植被;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号