...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects
【24h】

Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects

机译:膜内空化是超声诱导生物效应的统一机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavita-tional (<100 mWcm~(-2)) and therapeutic, potentially cavitational (>100 mW·cm~(-2)) spatial peak temporal average intensity levels. The cellular-level model (termed "bilayer sonophore") combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood-brain barrier perme-abilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency (ε_(A,max)α P_A~(0.8)f~(-0.5)) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.
机译:这项研究的目的是建立一个统一的模型,该模型能够解释超声和生物组织在诊断性非热非空化(<100 mWcm〜(-2))和治疗性,潜在空化(> 100)下的相互作用机制。 mW·cm〜(-2))的空间峰值时间平均强度水平。细胞水平模型(称为“双层超声载体”)将气泡动力学与细胞生物力学相结合,以确定两个脂质双层膜小叶的动力学行为。这种统一模型的存在可能会为许多受控的超声辅助应用铺平道路,包括中枢神经系统调制和血脑屏障通透性。该模型预测,细胞膜本质上能够从超声场吸收机械能并将其转化为膜内空间的膨胀和收缩。它进一步预测最大面积应变与声压振幅成正比,与频率(ε_(A,max)αP_A〜(0.8)f〜(-0.5))的平方根成反比,并且随着接近度而增大到自由表面,自由介质中附近微气泡的存在以及周围组织的柔韧性。使用透射电子显微镜(TEM)通过多层活细胞金鱼表皮在空化(1 MHz)和非空化(3 MHz)条件下体内暴露于连续波(CW)超声的实验支持模型预测。我们的研究结果支持以下假设:超声诱导的双层膜运动(不需要组织中预先存在气隙)可以解释多种生物效应,并且可以阐明超声与生物组织相互作用的机制,目前尚不完全了解。

著录项

  • 来源
  • 作者单位

    Faculty of Biomedical Engineering, Technion-lsrael Institute of Technology, Haifa 32000, Israel;

    Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064;

    Faculty of Biomedical Engineering, Technion-lsrael Institute of Technology, Haifa 32000, Israel;

    Faculty of Biomedical Engineering, Technion-lsrael Institute of Technology, Haifa 32000, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号