【24h】

Phase competition in trisected superconducting dome

机译:三等分超导圆顶的相竞争

获取原文
获取原文并翻译 | 示例
       

摘要

A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved pho-toemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi_2Sr_2CaCU_2O_(8+δ), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T_c and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudo-gap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.
机译:低能激发的详细现象学是微观理解复杂材料(例如铜酸盐高温超导体)的关键起点。由于其独特的动量空间辨别力,因此角分辨光发射光谱法(ARPES)非常适合在铜酸盐中执行此任务,在这些铜酸盐中,出现的相,尤其是超导电性和拟间隙,在动量空间中具有各向异性的间隙结构。我们目前对Bi_2Sr_2CaCU_2O_(8 +δ)中的谱隙进行了全面的掺杂和温度依赖性ARPES研究,涵盖了相图的大部分超导部分。在基态下,近节点间隙现象学的突然变化为两个潜在的量子临界点提供了光谱学证据,伪间隙相的p = 0.19,另一个竞争相的p = 0.076。温度依赖性显示伪间隙在T_c以下不是静态的,并且在较高温度下存在p> 0.19。我们的数据暗示了经过修订的相图,该图与文献中伪间隙端点的矛盾报告相协调,并纳入了超导间隙和伪间隙之间的相位竞争,并突出了超导圆顶边缘的独特物理学。

著录项

  • 来源
  • 作者单位

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025;

    Department of Physics, Boston College, Chestnut Hill, MA 02467;

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305;

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025;

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025;

    State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China;

    School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand;

    Materials and Structures Laboratory, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;

    Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan;

    Laboratory for Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853;

    Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan;

    Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan;

    Superconducting Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan;

    Superconducting Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan;

    Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305;

    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025,Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quantum materials; correlated electrons; laser ARPES;

    机译:量子材料相关电子激光ARPES;
  • 入库时间 2022-08-18 00:40:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号