首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Theoretical study of catalytic mechanism for single-site water oxidation process
【24h】

Theoretical study of catalytic mechanism for single-site water oxidation process

机译:单点水氧化过程催化机理的理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

Water oxidation is a linchpin in solar fuels formation, and catalysis by single-site ruthenium complexes has generated significant interest in this area. Combining several theoretical tools, we have studied the entire catalytic cycle of water oxidation for a single-site catalyst starting with [Ru~(Ⅱ)(tpy)(bpm)(OH_2)]~(2+) (i.e., [Ru~(Ⅱ)OH_2]~(2+); tpy is 2,2':6',2"-terpyridine and bpm is 2,2-bypyrimidine) as a representative example of a new class of single-site catalysts. The redox potentials and pK, calculations for the first two proton-coupled electron transfers (PCETs) from [Ru~(Ⅱ)-OH_2]~(2+) to [Ru~(Ⅳ) = O]~(2+) and the following electron-transfer process to [Ru~v = O]~(2+) suggest that these processes can proceed readily in acidic or weakly basic conditions. The subsequent water splitting process involves two water molecules, [Ru~v = O]~(3+) to generate [Ru~(Ⅲ)-OOH]~(2+), and H_3O+ with a low activation barrier (~10 kcal/mol). After the key O-O bond forming step in the single-site Ru catalysis, another PECT process oxidizes [Ru~(Ⅲ)-OOH]~(2+) to [Ru~(Ⅳ)-OO]~(2+) when the pH is lower than 3.7. Two possible forms of [Ru~(Ⅳ)-OO]~(2+), open and closed, can exist and interconvert with a low activation barrier (<7 kcal/mol) due to strong spin-orbital coupling effects. In Pathway 1 at pH = 1.0, oxygen release is rate-limiting with an activation barrier -12 kcal/mol while the electron-transfer step from [Ru~(Ⅳ)-OO]~(2+)to [Ru~V-OO]~(3+) becomes rate-determining at pH = 0 (Pathway 2) with Ce(Ⅳ) as oxidant. The results of these theoretical studies with atomistic details have revealed subtle details of reaction mechanisms at several stages during the catalytic cycle. This understanding is helpful in the design of new catalysts for water oxidation.
机译:水氧化是太阳能燃料形成过程中的关键,单点钌络合物的催化作用引起了人们对该领域的极大兴趣。结合几种理论工具,我们以[Ru〜(Ⅱ)(tpy)(bpm)(OH_2)]〜(2 +)(即[Ru〜 (Ⅱ)OH_2]〜(2 +); tpy是2,2':6',2“-吡啶和bpm是2,2-bypyrimidine)作为新型单中心催化剂的代表。电位和pK,从[Ru〜(Ⅱ)-OH_2]〜(2+)到[Ru〜(Ⅳ)= O]〜(2+)的前两个质子耦合电子转移(PCET)的计算及以下[Ru〜v = O]〜(2+)的电子转移过程表明,这些过程可以在酸性或弱碱性条件下容易进行,随后的水分解过程涉及两个水分子[Ru〜v = O]〜( 3+)生成[Ru〜(Ⅲ)-OOH]〜(2+)和H_3O +,具有较低的激活势垒(〜10 kcal / mol)。在单中心Ru催化中关键的OO键形成步骤之后,当pH值低于3.7时,另一种PECT过程将[Ru〜(Ⅲ)-OOH]〜(2+)氧化为[Ru〜(Ⅳ)-OO]〜(2 +)。[Ru〜(Ⅳ)有两种可能的形式)-OO]〜(2+),由于强烈的自旋-轨道耦合效应,开环和闭环可以存在并以低激活势垒(<7 kcal / mol)互变。在途径1中,pH = 1.0时,氧的释放受到激活屏障-12 kcal / mol的限制,同时电子从[Ru〜(Ⅳ)-OO]〜(2+)转移到[Ru〜V- OO]〜(3+)在pH = 0(途径2)下,以Ce(Ⅳ)为氧化剂进行速率测定。这些具有原子细节的理论研究结果揭示了催化循环中多个阶段反应机理的细微细节。这种理解有助于设计用于水氧化的新型催化剂。

著录项

  • 来源
  • 作者单位

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China,Department of Chemistry, Duke University, Durham, NC 27708;

    Department of Chemistry, Duke University, Durham, NC 27708;

    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;

    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;

    Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3420;

    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;

    Department of Chemistry, Duke University, Durham, NC 27708;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    catalysis; polypyridyl ru complexes; quantum mechanics/molecular mechanics;

    机译:催化;聚吡啶钌配合物;量子力学/分子力学;
  • 入库时间 2022-08-18 00:40:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号