首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Independent regulation of tumor cell migration by matrix stiffness and confinement
【24h】

Independent regulation of tumor cell migration by matrix stiffness and confinement

机译:通过基质刚度和约束力独立调节肿瘤细胞的迁移

获取原文
获取原文并翻译 | 示例
       

摘要

Tumor invasion and metastasis are strongly regulated by biophysical interactions between tumor cells and the extracellular matrix (ECM). While the influence of ECM stiffness on cell migration, adhesion, and contractility has been extensively studied in 2D culture, extension of this concept to 3D cultures that more closely resemble tissue has proven challenging, because perturbations that change matrix stiffness often concurrently change cellular confinement. This coupling is particularly problematic given that matrix-imposed steric barriers can regulate invasion speed independent of mechanics. Here we introduce a matrix platform based on micro-fabrication of channels of defined wall stiffness and geometry that allows independent variation of ECM stiffness and channel width. For a given ECM stiffness, cells confined to narrow channels surprisingly migrate faster than cells in wide channels or on unconstrained 2D surfaces, which we attribute to increased polarization of cell-ECM traction forces. Confinement also enables cells to migrate increasingly rapidly as ECM stiffness rises, in contrast with the biphasic relationship observed on unconfined ECMs. Inhibition of nonmuscle myosin II dissipates this traction polarization and renders the relationship between migration speed and ECM stiffness comparatively insensitive to matrix confinement. ,We test these hypotheses in silico by devising a multiscale mathematical model that relates cellular force generation to ECM stiffness and geometry, which we show is capable of recapitulating key experimental trends. These studies represent a paradigm for investigating matrix regulation of invasion and demonstrate that matrix confinement alters the relationship between cell migration speed and ECM stiffness.
机译:肿瘤细胞与细胞外基质(ECM)之间的生物物理相互作用强烈调节肿瘤的侵袭和转移。虽然在2D培​​养中已经广泛研究了ECM刚度对细胞迁移,粘附和收缩力的影响,但将这一概念扩展到更类似于组织的3D培养已证明是具有挑战性的,因为改变基质刚度的扰动通常会同时改变细胞限制。考虑到矩阵施加的空间屏障可以独立于力学来调节入侵速度,这种耦合特别成问题。在这里,我们介绍一种基于微细加工的,定义的壁刚度和几何形状的通道的矩阵平台,该通道允许ECM刚度和通道宽度的独立变化。对于给定的ECM刚度,局限在狭窄通道内的细胞迁移比在宽通道或不受约束的2D表面上的细胞迁移更快,这归因于细胞ECM牵引力的极化增加。与在无约束的ECM上观察到的两相关系相反,约束还使细胞随着ECM刚度的增加而越来越快地迁移。抑制非肌肉肌球蛋白II消除了这种牵引极化,并使迁移速度和ECM刚度之间的关系对基质限制相对不敏感。 ,我们通过设计将细胞力产生与ECM刚度和几何形状相关的多尺度数学模型,在计算机上测试了这些假设,我们证明了该模型能够概括出关键的实验趋势。这些研究代表了研究侵袭的基质调节的范例,并证明了基质限制改变了细胞迁移速度和ECM硬度之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号