...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Enabling high-temperature nanophotonics for energy applications
【24h】

Enabling high-temperature nanophotonics for energy applications

机译:为能源应用启用高温纳米光子学

获取原文
获取原文并翻译 | 示例

摘要

The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective emission of light. However, special challenges arise when trying to design nanophotonic materials with precisely tailored optical properties that can operate at high-temperatures (>1,100 K). These include proper material selection and purity to prevent melting, evaporation, or chemical reactions; severe minimization of any material interfaces to prevent thermo-mechanical problems such as delamination; robust performance in the presence of surface diffusion; and long-range geometric precision over large areas with severe minimization of very small feature sizes to maintain structural stability. Here we report an approach for high-temperature nanophotonics that surmounts alt of these difficulties. It consists of an analytical and computationally guided design involving high-purity tungsten in a precisely fabricated photonic crystal slab geometry (specifically chosen to eliminate interfaces arising from layer-by-layer fabrication) optimized for high performance and robustness in the presence of roughness, fabrication errors, and surface diffusion. It offers near-ultimate short-wavelength emittance and low, ultra-broadband long-wavelength emittance, along with a sharp cutoff offering 4:1 emittance contrast over 10% wavelength separation. This is achieved via Q-matching, whereby the absorptive and radiative rates of the photonic crystal's cavity resonances are matched. Strong angular emission selectivity is also observed, with short-wavelength emission suppressed by 50% at 75° compared to normal incidence. Finally, a precise high-temperature measurement technique is developed to confirm that emission at 1,225 K can be primarily confined to wavelengths shorter than the cutoff wavelength.
机译:高温纳米光子学的新生领域有可能实现许多重要的固态能量转换应用,例如热光电能量产生,选择性太阳吸收和选择性光发射。但是,在尝试设计具有可在高温(> 1,100 K)下运行的精确定制光学特性的纳米光子材料时,会遇到特殊的挑战。这些包括适当的材料选择和纯度,以防止熔化,蒸发或化学反应;严格最小化任何材料界面,以防止发生热机械问题,例如分层;在存在表面扩散的情况下性能稳定;大范围的长期几何精度,同时极大地减小了非常小的特征尺寸,以保持结构稳定性。在这里,我们报告了一种克服了所有这些困难的高温纳米光子学方法。它由分析和计算指导的设计组成,该设计涉及精确制造的光子晶体平板几何形状中的高纯度钨(专门选择以消除由逐层制造产生的界面),并针对存在粗糙度和制造情况时的高性能和鲁棒性进行了优化错误和表面扩散。它提供近乎完美的短波发射率和低超宽带长波发射率,以及在10%的波长间隔内提供4:1发射率对比度的尖锐截止。这是通过Q匹配实现的,从而使光子晶体腔共振的吸收率和辐射率匹配。还观察到强角发射选择性,与法向入射相比,短波发射在75°时抑制了50%。最后,开发了一种精确的高温测量技术,以确认可以将1,225 K的发射主要限制在短于截止波长的波长。

著录项

  • 来源
  • 作者单位

    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139,Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139,Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139,Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;

    Institute of Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号