首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Technologies for heating, cooling and powering rural health facilities in sub-Saharan Africa
【24h】

Technologies for heating, cooling and powering rural health facilities in sub-Saharan Africa

机译:撒哈拉以南非洲农村卫生设施的供热,制冷和供电技术

获取原文
获取原文并翻译 | 示例
       

摘要

This paper examines technical and economic choices for rural electrification in Africa and presents the rationale for trigeneration (capability for electricity, heating, and cooling) in health and education applications. An archetypal load profile for a rural health clinic (25kWh_e- day~(-1) and 118-139kWh_t) is described, and a regional analysis is performed for sub-Saharan Africa by aggregating NASA meteorological data (insolation, temperature, and heating and cooling degree days) using correlates to latitude. As a baseline for comparison, the technical, economic (using discounted cash flow) and environmental aspects of traditional electrification approaches, namely photovoltaic (PV) systems and diesel generators, are quantified, and options for meeting heating and cooling loads (e.g. gas-fired heaters, absorption chillers, or solar water heaters) are evaluated alongside an emerging micro-concentrating solar power (μ-CSP) technology featuring a solar thermal organic Rankine cycle (ORC). Photovoltaics hybridized with LPG/Propane and μ-CSP trigeneration are the lowest cost alternatives for satisfying important but often overlooked thermal requirements, with cost advantages for μ-CSP depending on latitudinal variation in insolation and thermal parameters. For a 15-year project lifetime, the net present cost for meeting clinic energy needs varied from 45 to 75 k USD, with specific levelized electricity costs of 0.26-0.31 USD kWh~(-1). In comparison, diesel generation of electricity is both costly (> 1 USD kWh~(-1)) and polluting (94 tons CO_2 per site over 15 years), while LPG/Propane based heating and cooling emits 160-400 tons CO_2 depending on ambient conditions. The comparative analysis of available technologies indicates that where the energy demand includes a mixture of electrical and thermal loads, as in typical health and education outposts, non-carbon emitting μ-CSP trigeneration approaches can be cost-effective.
机译:本文探讨了非洲农村电气化的技术和经济选择,并提出了在健康和教育应用中采用三代发电的理由(电力,供暖和制冷能力)。描述了农村卫生诊所的原型负荷曲线(25kWh_e-day-(-1)和118-139kWh_t),并通过汇总NASA气象数据(日照,温度,供暖和降温)对撒哈拉以南非洲进行了区域分析降温天数)的使用与纬度相关。作为比较的基准,量化了传统电气化方法的技术,经济(使用现金流折现)和环境方面,即光伏(PV)系统和柴油发电机,并提供了满足加热和冷却负荷(例如燃气)的选项加热器,吸收式冷却器或太阳能热水器)与新兴的具有太阳能热有机朗肯循环(ORC)的微浓缩太阳能(μ-CSP)技术一起进行了评估。与LPG /丙烷和μ-CSP三代杂交的光伏技术是满足重要但经常被忽视的热要求的成本最低的替代品,μ-CSP的成本优势取决于日照和温度参数的纬度变化。在为期15年的项目生命周期中,满足临床能源需求的当前净成本从45到75 k USD不等,特定的平准化电成本为0.26-0.31 USD kWh〜(-1)。相比之下,柴油发电既昂贵(> 1 USD kWh〜(-1))又污染(15年内每个站点94吨CO_2),而液化石油气/丙烷加热和冷却所产生的CO_2却高达160-400吨,具体取决于环境条件。对可用技术的比较分析表明,在能源需求包括电气负荷和热负荷的混合的情况下(如在典型的健康和教育基地),不排放碳的μ-CSP三联产方法可能具有成本效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号