首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Numerical investigation of a highly loaded centrifugal compressor stage with a tandem bladed impeller
【24h】

Numerical investigation of a highly loaded centrifugal compressor stage with a tandem bladed impeller

机译:带有串联叶轮的高负荷离心压缩机级的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study numerically investigated a highly loaded centrifugal compressor stage with various tandem-designed impellers and a wedge diffuser using a state-of-the-art multi-block flow solver to better understand the fundamental mechanism of tandem impellers. The flow topologies in the impeller are analyzed in detail to identify the underlying physical mechanism of the effect of the tandem-impeller design on the performance of the compressor stage. Particular emphasis is placed on the evolution of the flow structure in the tandem bladed impeller by varying the inducer–exducer clocking arrangements. The results demonstrate that a tandem compressor design is more efficient than a conventional compressor design for the majority of the tested clocking configurations, and the tandem clocking friction significantly affects the impeller performance. For the tested centrifugal compressor stage, an approximately 1.4% increase in isentropic efficiency and 1.3% increase in stall margin are achieved with an inducer–exducer clocking fraction of 25%. The improvement in the primary centrifugal compressor stage performance by the tandem-impeller design is a result of the manipulation of the flow structure and the reduction in the highly distorted jet/wake exit flow pattern. Compared to the conventional impeller designs, the tandem-impeller clocking arrangement variation significantly affects the high-momentum flow along the exducer suction surface and inducer wake diffusion, inlet axial velocity, and flow angle of the exducer blade. Therefore, this variation is advantageous for shortening the length of the boundary layers on both parts of the blade and enables an intense mixing at the exducer passage to improve the flow uniformity of the impeller exit. As a result, the impeller efficiency, diffuser recovery, and stalling margin can be improved compared with the conventional design.
机译:这项研究对采用各种串联设计的叶轮和楔形扩散器的高负荷离心压缩机级进行了数值研究,并使用了最新的多段流求解器,以更好地了解串联叶轮的基本机理。对叶轮中的流动拓扑进行了详细分析,以确定串联叶轮设计对压缩机级性能的影响的潜在物理机制。通过改变诱导器-诱导器的时钟安排,特别强调了串联叶片式叶轮中流动结构的演变。结果表明,对于大多数已测试的时钟配置,串联压缩机设计比常规压缩机设计更有效,并且串联时钟摩擦会显着影响叶轮性能。对于经过测试的离心式压缩机级,感应器-感应器的时钟比例为25%,等熵效率提高约1.4%,失速裕度提高1.3%。串联叶轮设计提高了一级离心压缩机级的性能,这是通过控制流动结构并减少了高度变形的射流/尾流出口流型的结果。与传统的叶轮设计相比,串联式叶轮的计时安排变化会显着影响沿引流器吸力面的高动量流动和引流器尾流扩散,进口轴向速度以及引流器叶片的流动角度。因此,该变化形式有利于缩短叶片的两个部分上的边界层的长度,并且能够在排出器通道处进行强烈的混合以改善叶轮出口的流动均匀性。结果,与常规设计相比,可提高叶轮效率,扩压器回收率和失速裕度。

著录项

  • 来源
  • 作者单位

    Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing, China,University of Chinese Academy of Sciences, Beijing, China;

    Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing, China,University of Chinese Academy of Sciences, Beijing, China;

    Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing, China,University of Chinese Academy of Sciences, Beijing, China;

    Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing, China;

    Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing, China;

    Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Highly loaded centrifugal compressor; tandem impeller; clocking arrangement; numerical;

    机译:高负荷离心压缩机;串联叶轮;计时装置;数字;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号