首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number
【24h】

Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number

机译:在过渡雷诺数下不带前沿板条的翼型上流过

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a multi-element aerofoil including NACA2415 aerofoil with NACA22 leading-edge slat is experimentally and computationally investigated at a transitional Reynolds number of 2 × 10~5. In the experiment, the single-element aerofoil experiences a laminar separation bubble, and a maximum lift coefficient of 1.3 at a stall angle of attack of 12° is obtained. This flow has been numerically simulated by FLUENT, employing the recently developed, k-k_L-ω and k-ω shear-stress transport (SST) transition models. Both transition models are shown to accurately predict the location of the experimentally determined separation bubble. Experimental measurements also illustrate that the leading-edge slat significantly delays the stall up to an angle of attack of 20°, with a maximum lift coefficient of 1.9. The fluid dynamics governing this improvement is the elimination of the separation bubble by the injection of high momentum fluid through the slat over the main aerofoil - an efficient means of flow control. Numerical simulations using k-k_L-ω are shown to accurately predict the lift curve, including stall, but not the complete elimination of the separation bubble. Conversely, the lift curve prediction using the k-ω SST transition model is less successful, but the separation bubble is shown to fully vanish in agreement with the experiment.
机译:在这项研究中,以2×10〜5的过渡雷诺数通过实验和计算研究了包括NACA2415翼型和NACA22前沿板条在内的多元素翼型。在实验中,单元素翼型经历层状分离气泡,在失速攻角为12°时获得的最大升力系数为1.3。 FLUENT使用最新开发的k-k_L-ω和k-ω切应力传递(SST)过渡模型对流动进行了数值模拟。两种过渡模型均能准确预测实验确定的分离气泡的位置。实验测量还表明,前缘板条可显着延迟失速,直至达到20°的迎角,最大升力系数为1.9。决定这一改进的流体动力学是通过高动量流体通过主翼型上的板条注入来消除分离气泡的一种有效的流量控制手段。显示了使用k-k_L-ω的数值模拟可以准确预测升程曲线,包括失速,但不能完全消除分离气泡。相反,使用k-ωSST过渡模型的升力曲线预测不太成功,但是分离气泡显示完全消失,与实验一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号