...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >New signal scaling strategies for return phase training in motion-base spaceflight simulator
【24h】

New signal scaling strategies for return phase training in motion-base spaceflight simulator

机译:用于基于运动的太空模拟器中返回相位训练的新信号缩放策略

获取原文
获取原文并翻译 | 示例
           

摘要

Signal scaling is an essential step in spaceflight simulation. Thus far, the third-order polynomial scaling method has been widely used for signal scaling; however, in this method, parameter tuning is complicated and may induce perceptible distortion during large-range monotonic signal scaling. In the simulation of spacecraft return, specifically, that of re-entry, acceleration and angular velocity signals may vary considerably over short time periods. Motion perception is important for training astronauts in this phase. In this study, two strategies are proposed to solve these problems using the 'scaling scope' parameter. The first strategy is based on the Hermite interpolation polynomial, and the other is based on third-order polynomial scaling. Two methods were developed which make use of the stable region of third-order polynomial scaling. The first method maximizes the stable region to prevent signal distortion, and the other restricts the scaling scope in the stable region. Based on the dynamic characteristics of spacecraft in the return phase, the signal scaling strategies proposed in this study are simulated for trainees' perception in a motion-base simulator. Simulations were implemented by utilizing the full curves of spacecraft return phase for the first time, and results show that these methods are more advantageous for parameter tuning and can eliminate signal distortion for all input signals. While these methods have a shortcoming in that the trigger velocity (onset cue) is slowed down, this shortcoming is eliminated by employing the moving cueing algorithm. Both the strategies proposed in this article show good performance and can be applied potentially to the motion simulation of the spacecraft return phase.
机译:信号缩放是航天模拟中必不可少的步骤。迄今为止,三阶多项式缩放方法已被广泛用于信号缩放。但是,在这种方法中,参数调整很复杂,并且可能在大范围单调信号缩放过程中引起可感知的失真。在航天器返回的模拟中,特别是在返回的模拟中,加速度和角速度信号可能会在短时间内发生很大变化。在这个阶段,运动知觉对于训练宇航员很重要。在这项研究中,提出了两种使用“缩放范围”参数解决这些问题的策略。第一种策略基于Hermite插值多项式,另一种策略基于三阶多项式缩放。开发了两种方法,它们利用了三阶多项式缩放的稳定区域。第一种方法最大化稳定区域以防止信号失真,另一种方法限制了稳定区域中的缩放范围。基于航天器返回阶段的动态特性,在运动基础模拟器中模拟了本研究中提出的信号缩放策略,以提高学员的感知能力。首次利用航天器返回相位的全曲线进行了仿真,结果表明,这些方法对于参数调整更有利,并且可以消除所有输入信号的信号失真。尽管这些方法的缺点是触发速度(起始提示)变慢,但是通过使用移动提示算法可以消除此缺点。本文提出的两种策略均显示出良好的性能,并且可以潜在地应用于航天器返回阶段的运动仿真。

著录项

  • 来源
  • 作者单位

    National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Box 5132-22, Beijing 100094, P.R. China,School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, P.R. China;

    School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, P.R. China;

    National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, P.R. China;

    National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, P.R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scaling strategy; motion-base simulator; spaceflight training; spacecraft return;

    机译:扩展策略;运动基础模拟器;航天训练;飞船返回;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号