首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Numerical study of the internal flow field of a dual pulse solid rocket motor including conjugate heat transfer
【24h】

Numerical study of the internal flow field of a dual pulse solid rocket motor including conjugate heat transfer

机译:含共轭传热的双脉冲固体火箭发动机内部流场的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical simulations were performed to study the influence of the inside diameter of the pulse separation device port on the flow features and the local heat transfer characteristics in a dual pulse solid rocket motor. A lower-upper symmetric Gauss-Seidel implicit dual time-stepping method was applied to address the problem of unsteady flow. A high-resolution upwind scheme (AUSMPW+) and Menter's shear stress transport turbulence model were employed to solve the Reynolds-averaged Navier-Stokes equations. The conjugate heat transfer strategy was realized by enforcing a common temperature and heat flux at the fluid-solid interface. After validating the accuracy and reliability of the numerical algorithm by comparison with experimental cases, the internal flow of a dual pulse solid rocket motor was simulated. The results show that the magnitude of the velocity, the wall shear stress, and the turbulent kinetic energy downstream of the pulse separation device port decrease with increasing pulse separation device port diameter. The local heat transfer coefficient increases sharply downstream of the pulse separation device port, reaching a maximum within 1-2 diameters downstream of the pulse separation device port, before relaxing back to the fully developed pipe flow value. The peak value of the local heat transfer coefficient reduces as the pulse separation device port diameter increases. Meanwhile with an increasing pulse separation device port diameter, the position of the peak local heat transfer coefficient moves upstream to the head of the first pulse chamber, and appears upstream of the position of the reattachment point by an average of about 28.6%.
机译:进行了数值模拟,以研究脉冲分离装置端口的内径对双脉冲固体火箭发动机的流动特性和局部传热特性的影响。为了解决非定常流动问题,采用了一种上下对称的高斯-塞德尔隐式双重时间步长方法。采用高分辨率迎风方案(AUSMPW +)和Menter的切应力传递湍流模型来求解雷诺平均Navier-Stokes方程。共轭传热策略是通过在流固界面施加共同的温度和热通量来实现的。通过与实验案例的比较验证了数值算法的准确性和可靠性,对双脉冲固体火箭发动机的内部流动进行了仿真。结果表明,随着脉冲分离装置端口直径的增加,脉冲分离装置端口下游的速度,壁切应力和湍动能减小。局部传热系数在脉冲分离装置端口的下游急剧增加,在释放回完全发展的管道流量之前,在脉冲分离装置端口的下游1-2个直径内达到最大值。局部传热系数的峰值随着脉冲分离装置端口直径的增加而减小。同时,随着脉冲分离装置端口直径的增加,峰值局部传热系数的位置向上游移动到第一脉冲腔室的顶部,并以平均约28.6%的速度出现在重新连接点位置的上游。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号