首页> 外文期刊>Journal of Systems and Control Engineering >Nanosecond dielectric barrier discharge-based dynamic stall control on an SC-1095 airfoil
【24h】

Nanosecond dielectric barrier discharge-based dynamic stall control on an SC-1095 airfoil

机译:基于纳秒介电屏障放电的SC-1095翼型上的动态失速控制

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic stall is a time-dependent flow separation and stall phenomenon that is present in many applications, including violently maneuvering aircraft, surging compressor, wind turbine, and, most observably, rotorcraft. Nanosecond dielectric barrier discharge plasma actuator has previously demonstrated the control ability in static stall conditions and shows promise to address dynamic stall. The present work explores the ability of nanosecond dielectric barrier discharge to control dynamic stall over an SC-1095 airfoil and summarizes the control law of actuation parameters. The actuation voltage, actuation frequency, and reduced frequencies were varied over large ranges: V_(p–p) = 7–13 kV, F ~(+)= 0.5–10, and k = 0.05–0.15. Direct aerodynamic measurements were taken for each combination of actuation voltages and actuation frequencies, and fixed combination at different experimental reduced frequencies. It was observed that nanosecond dielectric barrier discharge could effectively improve the dynamic stall characteristics, and three major conclusions were drawn. First, there is a threshold for actuation voltage. Only when the actuation voltage is greater than or equal to the threshold voltage can the separation be effectively suppressed and the steep stall can be alleviated. Second, High F ~(+)has better control performance of maintaining peak lift in the stall regime and achieves better effects in moment control and drag reduction while lift reattachment is better with low F ~(+)on downstroke. Last, with the increase of reduced frequency, the control effect of nanosecond dielectric barrier discharge with settled actuation parameter combination becomes worse, so greater cost needs to be paid for effective control at a larger reduced frequency.
机译:动态失速是一种时间依赖的流动分离和摊位现象,其存在于许多应用中,包括剧烈机动飞机,浪涌压缩机,风力涡轮机,以及最明的旋翼飞机。纳秒介电阻挡放电等离子体致动器先前展示了静态失速条件中的控制能力,并显示了解决动态档位的承诺。目前的作品探讨了纳秒介电屏障放电在SC-1095翼型上控制动态失速的能力,并总结了致动参数的控制规律。致动电压,致动频率和减小的频率在大范围内变化:V_(P-P)= 7-13 kV,f〜(+)= 0.5-10,k = 0.05-0.15。针对各种致动电压和致动频率的组合,以及不同实验降低的频率的固定组合进行了直接的空气动力学测量。观察到纳秒介电阻挡放电可以有效地改善动态失速特性,并绘制了三个主要结论。首先,存在致动电压的阈值。仅当致动电压大于或等于阈值电压时,才能有效地抑制分离,并且可以减轻陡峭的稳定性。其次,高f〜(+)具有更好的控制性能,可以在摊位制度中保持峰值升力,并在瞬间控制和减阻时实现更好的效果,同时提升重新连接更好地在下调低f〜(+)。最后,随着频率的增加,纳秒介电阻挡放电的控制效应与稳定的致动参数组合变得更糟,因此需要提高成本,以便以较大的减小的频率进行有效控制。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号