...
首页> 外文期刊>Power Systems, IEEE Transactions on >Propagating Uncertainty in Power System Dynamic Simulations Using Polynomial Chaos
【24h】

Propagating Uncertainty in Power System Dynamic Simulations Using Polynomial Chaos

机译:利用多项式混沌在电力系统动态仿真中传播不确定性

获取原文
获取原文并翻译 | 示例

摘要

Quantifying the uncertainty of the renewable energy generation units and loads is critical to ensure the dynamic security of next-generation power systems. To achieve that goal, the time-consuming Monte Carlo simulations are usually used, which is not suitable for online dynamic analysis of large-scale power systems. To circumvent this difficulty, two uncertainty quantification approaches using polynomial-chaos-based methods are proposed and investigated. The first approach is the generalized polynomial chaos method that is able to reduce the computing time by three orders of magnitude compared with Monte Carlo methods while achieving the same accuracy. We find that this approach is very useful for short-term power system dynamic simulations, but it may produce unreliable results for long-term simulations. To address the weakness of that approach, we present the second method, namely the multi-element generalized-polynomial-chaos method. It is seen that this method is more accurate and more numerically stable than the generalized polynomial chaos method. Since the uncertainties of the renewable energy generation units and loads can follow very different distributions, we extend the Stieltjes’ recursive procedure that allows us to derive the orthogonal basis functions for any assumed probability distribution of the input random variables. Extensive simulations carried out on the WECC 3-machine 9-bus system and the New England 10-machine 39-bus system reveal that our proposed approaches are able to produce comparable accuracy as the Monte Carlo based method while achieving significantly improved computational efficiency for both stable and unstable power system operating conditions.
机译:量化可再生能源发电单元和负荷的不确定性对于确保下一代电力系统的动态安全至关重要。为了实现该目标,通常使用费时的蒙特卡洛模拟,这不适用于大型电力系统的在线动态分析。为了克服这一困难,提出并研究了两种基于多项式混沌的不确定性量化方法。第一种方法是广义多项式混沌方法,与蒙特卡洛方法相比,它能够将计算时间减少三个数量级,同时达到相同的精度。我们发现这种方法对于短期电力系统动态仿真非常有用,但对于长期仿真可能会产生不可靠的结果。为了解决该方法的缺点,我们提出了第二种方法,即多元素广义多项式混沌方法。可以看出,与广义多项式混沌方法相比,该方法更准确,数值更稳定。由于可再生能源发电单元和负荷的不确定性可以遵循非常不同的分布,因此我们扩展了Stieltjes的递归程序,该程序允许我们为输入的随机变量的任何假定概率分布导出正交基函数。在WECC 3机9总线系统和New England 10机39总线系统上进行的广泛仿真显示,我们提出的方法能够产生与基于Monte Carlo的方法相当的精度,同时显着提高两种方法的计算效率稳定和不稳定的电力系统运行条件。

著录项

  • 来源
    《Power Systems, IEEE Transactions on》 |2019年第1期|338-348|共11页
  • 作者单位

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Northern Virginia Center, Falls Church, VA, USA;

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Northern Virginia Center, Falls Church, VA, USA;

    Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA;

    Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA;

    Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Northern Virginia Center, Falls Church, VA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Uncertainty; Power system dynamics; Load modeling; Power system stability; Chaos; Computational modeling; Random variables;

    机译:不确定度;电力系统动力学;负荷建模;电力系统稳定性;混沌;计算建模;随机变量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号