...
首页> 外文期刊>Polymer Engineering and Science >Online Simulation-Based Process Control for Injection Molding
【24h】

Online Simulation-Based Process Control for Injection Molding

机译:基于在线仿真的注塑过程控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An online numerical simulation is presented that is capable of predicting state variables such as flow rate, melt temperature, shear rate, and melt viscosity by using real time data from a nozzle pressure sensor. The simulation solves the non-Newtonian nonisothermal polymer flow into multicavity tools while executing rapidly enough for real time process control. Numerical accuracy and stability were first validated offline by comparing the online simulation to results obtained from a commercial mold filling simulation. Simulation-based process control was then demonstrated by transferring a molding machine from fill to pack-based on the predicted flow front position. The simulation-based controller dynamically determined the appropriate transfer position for each part and transferred the machine at the correct time, thereby eliminating flash. The simulation, however, did increase process variability slightly due to delay times associated with the controller-machine interface. A full factorial design of experiments (DOE) was performed varying injection velocity, mold temperature, and melt temperature. Results show that while the simulation dynamically adjusted the process on a part-by-part basis, it did not fully account for the process changes. Accuracy could potentially be improved by incorporating data from additional process sensors, by developing adaptive viscosity models, and by accounting for the melt compressibility. [PUBLICATION ABSTRACT]
机译:通过使用来自喷嘴压力传感器的实时数据,可以提供一个在线数值模拟,它能够预测状态变量,例如流量,熔体温度,剪切速率和熔体粘度。该仿真解决了非牛顿非等温聚合物流入多腔体工具的问题,同时执行得足够快,可以进行实时过程控制。首先,通过将在线模拟与从商业模具填充模拟获得的结果进行比较,首先离线验证了数值精度和稳定性。然后通过基于预测的流动前沿位置将成型机从填充位置转移到包装位置,来演示基于仿真的过程控制。基于仿真的控制器可动态确定每个零件的适当转移位置,并在正确的时间转移机器,从而消除毛刺。然而,由于与控制器-机器接口相关的延迟时间,该模拟确实略微增加了过程的可变性。通过改变注射速度,模具温度和熔体温度进行完整的因子设计实验(DOE)。结果表明,尽管模拟部分地动态调整了过程,但并未完全说明过程的变化。通过合并来自其他过程传感器的数据,开发自适应粘度模型并考虑熔体可压缩性,可能会提高准确性。 [出版物摘要]

著录项

  • 来源
    《Polymer Engineering and Science》 |2009年第12期|p.2482-2491|共10页
  • 作者单位

    Stephen P. Johnston,1 David O. Kazmer,1 Robert X. Gao21 Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA2 Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Amherst, MAThis article does not represent the opinions of the National Science Foundation or Cincinnati Milacron.Correspondence to: Dr. Stephen P. Johnston, e-mail: stephen_johnston@ uml.eduRobert X. Gao is currently at Department of Mechanical Engineering, University of Connecticut, Storrs, CT.Contract grant sponsor: National Science Foundation, contract grant number: 0428669, Contract grant sponsor: Cincinnati Milacron Corp.DOI 10.1002/pen.21481Published online in Wiley InterScience (www.interscience.wiley.com).© 2009 Society of Plastics Engineers,;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号