...
首页> 外文期刊>Polymer Degradation and Stability >Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments
【24h】

Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments

机译:辐射热环境下加速老化和聚合物降解动力学概述

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional E-a for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal E-a values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative E-a, time-dependence of rate, and added synergism that may grow with temperature. (C) 2019 Elsevier Ltd. All rights reserved.
机译:与传统的热降解相比,在辐射-热氧化组合条件下的聚合物老化本质上更加复杂。出于预测目的的加速老化方法必须包括热降解途径和辐射降解途径,这些途径最初可能被视为独立的并行过程,而没有额外的协同作用。因此,材料老化表示为热和辐射贡献之和。来自加速老化的数据可能以等效损伤(DED)或降解速率的剂量提供,但它们需要不同的分析方法才能得出潜在的温度依赖性及其活化能。此外,包含组合路径的动力学模型可以为加速条件向环境条件的推断提供指导,从而能够为重新鉴定目的而预测材料的老化行为或剩余性能裕度。综述了现有的理论方法,其含义以及将实验数据集整体拟合到组合环境的动力学老化模型的替代方法。本概述提供了一种务实的方法,可用于扩展解释组合环境中的氧化速率和老化数据属性,并一直依赖于速率和协同作用的时间依赖性。提供了进一步的证据,对于某些物质行为,在高剂量率条件下,对于辐射项而言,额外的E-a可能是有益的,就像协同相互作用参数的增加所表示的那样。得出了改进的动力学老化模型,并将其应用于氯磺化聚乙烯材料的一组全面的实验氧化速率。还要强调的一个问题是,初始氧化速率与氧化水平(积分速率)的叠加可能会由于增加的时间依赖性而导致热E-a值略有不同。恒定的氧化速率与断裂伸长率数据的指数衰减有关。可以通过测量氧化速率,对大剂量率-温度范围内材料行为的系统理解以及适当的老化模型的应用来改善老化预测。最一般的老化模型将包含辐射E-a,速率的时间依赖性以及可能随温度增长的附加协同作用。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号