...
首页> 外文期刊>IEEE Transactions on Plasma Science >Multiscale Coupling of Spacecraft Charging Model With Electric Propulsion Plume Simulation
【24h】

Multiscale Coupling of Spacecraft Charging Model With Electric Propulsion Plume Simulation

机译:电推进羽模拟的航天器充电模型多尺度耦合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

When designing spacecraft with electric propulsion (EP) devices, it is important to assess spacecraft integration to ensure that the important components are not subject to significant sputtering by high-energy ions. In addition to the EP device and its plume, surface charging of spacecraft has to be modeled properly, as surface potential can directly affect the sputtering rate. Three surface charging models are incorporated into the spacecraft module of the numerical simulation framework-Thermophysics Universal Research Framework (TURF), and these include: 1) dielectric; 2) conductive; and 3) charge propagation models. The charge propagation model has been upgraded to solve the surface charge distribution implicitly, allowing a wide range of electrical conductivity values without causing the simulation to become unstable. Each of the charging models is verified against a simple problem where an analytical solution can be determined. Then, the coupling of the surface charging model and a hybrid particle/fluid model is tested in a more complex problem, where the floating potential on a sphere immersed in plasma is to be obtained. Finally, the surface charging model in an EP plume simulation is demonstrated. These problems are multiscale in that the charging model has to resolve an electron timescale (i.e., plasma oscillation) while the particle time step has to be orders of magnitude larger than the electron timescale in order to maintain a long enough sampling window for the ion current to effectively reduce the statistical noise. Therefore, two separate time steps are introduced for a stable convergence of the coupled models.
机译:在设计带有电推进(EP)装置的航天器时,评估航天器的集成度很重要,以确保重要的组件不会受到高能离子的明显溅射。除了EP装置及其羽流外,还必须对航天器的表面电荷进行正确建模,因为表面电势会直接影响溅射速率。数值模拟框架-热物理学通用研究框架(TURF)的航天器模块中包含了三个表面充电模型,它们包括:1)电介质; 2)导电; 3)电荷传播模型。电荷传播模型已经升级,可以隐式地解决表面电荷的分布问题,从而可以在不使模拟变得不稳定的情况下实现较大范围的电导率值。针对可以确定分析解决方案的简单问题,对每个收费模型进行了验证。然后,在一个更复杂的问题中测试表面电荷模型和杂化颗粒/流体模型的耦​​合,在该问题中,将获得浸没在等离子体中的球体上的浮动电势。最后,在EP羽流模拟中演示了表面充电模型。这些问题是多尺度的,因为充电模型必须解析电子时间尺度(即等离子体振荡),而粒子时间步长必须比电子时间尺度大几个数量级,以便为离子电流维持足够长的采样窗口有效降低统计噪声。因此,引入了两个单独的时间步长,以使耦合模型稳定收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号