...
首页> 外文期刊>IEEE Transactions on Plasma Science >Splashing Characteristics of Microparticles From Electrode Erosion for Copper, Molybdenum, and Tungsten-Copper
【24h】

Splashing Characteristics of Microparticles From Electrode Erosion for Copper, Molybdenum, and Tungsten-Copper

机译:电极腐蚀对铜,钼和钨铜的微粒飞溅特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microparticles from electrode erosion would lead field distortion, microdischarge, or impact damage, which are convinced to be mainly responsible for degradation of insulation performance in switches. To investigate the splashing characteristics of microparticles from electrode erosion, this paper performs the discharge experiments between two cylinder electrodes, made of copper, molybdenum, or tungsten-copper. A statistical method based on laser confocal microscopy is introduced to visualize the distribution of microparticles on the electrode surface. Experimental results indicate that the number of microparticles increases and the acceleration tendency gets mild as the discharge shots accumulate. The Cu surface would lead more production of the >2 mu m microparticles than other two materials after hundreds of shots, which would provide an explanation for its relative poor reliability and insulation performance. The electrode surface has formed two distinct zones for distribution of these microparticles: inner zone and outer zone after hundreds of discharge shots. Estimation of inner zone radius and splashing angles of microparticles indicates that the larger the microparticles are, the smaller the angle they would be splashed out with. Finally, the evolution of arc column in the first quarter discharge cycle is captured by a high-speed camera and its relation with the concentration of microparticles is discussed.
机译:电极腐蚀产生的微粒会导致电场畸变,微放电或冲击破坏,这被认为是造成开关绝缘性能下降的主要原因。为了研究电极腐蚀引起的微粒飞溅特性,本文进行了两个由铜,钼或钨铜制成的圆柱电极之间的放电实验。引入了基于激光共聚焦显微镜的统计方法,以可视化电极表面上的微粒分布。实验结果表明,随着放电弹的积累,微粒数量增加,加速趋势趋于缓和。经过数百次击打,Cu表面将比其他两种材料更多地产生> 2μm的微粒,这可以解释其相对较差的可靠性和绝缘性能。电极表面已形成两个不同的区域,用于分布这些微粒:数百次放电后,内部区域和外部区域。估计内部区域半径和微粒的飞溅角表明,微粒越大,微粒被飞溅的角度越小。最后,用高速相机捕获了电弧柱在第一个四分之一放电周期中的演变,并讨论了它与微粒浓度的关系。

著录项

  • 来源
    《IEEE Transactions on Plasma Science》 |2019年第2期|1387-1393|共7页
  • 作者单位

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peoples R China|China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Peoples R China;

    Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peoples R China;

    China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Peoples R China;

    China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Peoples R China;

    China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Arc column; electrode erosion; high-speed camera; insulation performance; microparticles;

    机译:电弧柱;电极腐蚀;高速照相机;绝缘性能;微粒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号