首页> 外文期刊>Plant and Soil >Comparison of laboratory- and field-derived soil water retention curves for a fine sand soil using tensiometric, resistance and capacitance methods
【24h】

Comparison of laboratory- and field-derived soil water retention curves for a fine sand soil using tensiometric, resistance and capacitance methods

机译:使用张力法,电阻法和电容法比较细砂土的实验室和田间土壤保水曲线

获取原文
获取原文并翻译 | 示例
       

摘要

The approximate range from 100 to 50% of plant-available water in Apopka fine sand (loamy, siliceous, hyperthermic Grossarenic Paleudult) is 0.08–0.04 cm3 cm−3 soil water content (θ) or −5 to −15 kPa of soil water matric potential (φ). This narrow range of plant-available soil water is extremely dry for most soil water sensors. Knowledge of the soil water retention curves for these soils is important for effective irrigation of crops in fine sand soils of subtropical and tropical regions of the world. The primary objective of this study was to compare sandy soil water retention curves in the field as measured by tensiometer and resistance block φ values and capacitance sensor θ. The second objective was to compare these curves to one developed on a Florida fine sand soil using a pressure plate apparatus. Tensiometer and resistance block φ values were compared to θ values from capacitance sensors calibrated gravimetrically. The effective range of both tensiometers and resistance sensors in fine sand soils is between −5 and −20 kPa φ. Soil water potential values for both sensors were within 2 kPa of the mean for each sensor. Change in φ was similar over the range of 0.04–0.08 cm3 cm−3 θ. Curves for the two sensors were different by 4 kPa at 0.04 cm3 cm−3. The relationship between φ and θ were similar at 10–20, 20–30 and 40–50 cm depths. This was not true for a laboratory determined soil water retention curve for the same soil type. These differences are significant in soils with very low water holding capacities. Differences between laboratory- and field-determined retention curves could be due to a combination of entrapped air in the field soil and/or alteration in bulk density in the laboratory samples.
机译:Apopka细砂(壤土,硅质,高温Grossarenic Paleudult)中植物可用水的大约100%至50%为0.08–0.04 cm3 cm−3 土壤含水量(θ)或-土壤水基质势(φ)为5至-15 kPa。对于大多数土壤水传感器而言,这种植物可用土壤水的范围非常狭窄。了解这些土壤的土壤保水曲线对于有效灌溉世界亚热带和热带地区的细沙土壤中的作物非常重要。这项研究的主要目的是比较用张力计和电阻块φ值以及电容传感器θ测得的田间沙质土壤保水曲线。第二个目的是将这些曲线与使用压板设备在佛罗里达细砂土上形成的曲线进行比较。将张力计和电阻模块的φ值与通过重量法校准的电容传感器的θ值进行比较。在细沙土中,张力计和电阻传感器的有效范围都在-5至-20 kPaφ之间。两个传感器的土壤水势值均在每个传感器平均值的2 kPa以内。在0.04-0.08 cm3 cm-3 θ范围内,φ的变化相似。在0.04 cm3 cm-3 处,两个传感器的曲线相差4 kPa。 φ和θ之间的关系在10–20、20–30和40–50 cm深度相似。对于相同土壤类型的实验室确定的土壤保水曲线,情况并非如此。这些差异在保水能力非常低的土壤中非常明显。实验室和野外确定的保留曲线之间的差异可能是由于野外土壤中夹带的空气和/或实验室样品中堆积密度的变化所致。

著录项

  • 来源
    《Plant and Soil》 |2001年第2期|153-157|共5页
  • 作者单位

    Citrus Research and Education Center University of Florida Institute of Food and Agricultural Sciences;

    Citrus Research and Education Center University of Florida Institute of Food and Agricultural Sciences;

    Citrus Research and Education Center University of Florida Institute of Food and Agricultural Sciences;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    citrus; in situ soil water release curve; sandy soils;

    机译:柑橘;原地土壤水分释放曲线;沙质土壤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号