首页> 外文期刊>Plant and Soil >Plant and microbial nitrogen use and turnover: Rapid conversion of nitrate to ammonium in soil with roots
【24h】

Plant and microbial nitrogen use and turnover: Rapid conversion of nitrate to ammonium in soil with roots

机译:植物和微生物氮的使用和周转:具有根的土壤中硝态氮快速转化为铵态

获取原文
获取原文并翻译 | 示例
       

摘要

Immobilization of ammonium (NH 4 + ) by plants and microbes, a controlling factor of ecosystem nitrogen (N) retention, has usually been measured based on uptake of15NH 4 + solutions injected into soil. To study the influence of roots on N dynamics without stimulating consumption of NH 4 + , we estimated gross nitrification in the presence or absence of live roots in an agricultural soil. Tomato (Lycopersicon esculentum var. Peto76) plants were grown in microcosms containing root exclosures. When the plants were 7 weeks old,15N enriched nitrate (NO 3 − ) was applied in the 0–150 mm soil layer. After 24 h, > 30 times more15NH 4 + was found in the soil with roots than in the soil of the root exclosures. At least 18% of the NH 4 + -N present at this time in the soil with roots had been converted from NO 3 − . We estimated rates of conversion of NO 3 − to NH 4 + , and rates ofNH 4 + immobilization by plants and microbes, by simulating N-flow of14+15N and15N in three models representing mechanisms that may be underlying the experimental data: Dissimilatory NO 3 − reduction to NH 4 + (DNRA), plant N efflux, and microbial biomass nitrogen (MBN) turnover. Compared to NO 3 − uptake, plant NH 4 + uptake was modest. Ammonium immobilization by plants and microbes was equal to at least 35% of nitrification rates. The rapid recycling of NO 3 − to NH 4 + via plants and/or microbes contributes to ecosystem N retention and may enable plants growing in agricultural soils to capture more NH 4 + than generally assumed.
机译:植物和微生物对铵态氮(NH 4 + )的固定作用是生态系统氮(N)保留的控制因素,通常是根据对15 NH 4 的吸收来测量的。 + 溶液注入土壤。为了研究根系对N动态的影响而又不刺激NH 4 + 的消耗,我们估计了农业土壤中存在或不存在根系时的总硝化作用。番茄(Lycopersicon esculentum var。Peto76)植物在含有根暴露物的微观世界中生长。当植物7周龄时,在0-150 mm土壤层上施用15 N富硝酸盐(NO 3 -)。 24小时后,有根土壤中15 NH 4 + 的含量是根部暴露土壤中的30倍以上。此时存在于根系土壤中的NH 4 + -N中至少有18%已从NO 3 -转化。我们估算了由植物和微生物将NO 3 -转化为NH 4 + 的速率以及固定化NH 4 + 的速率。在表示可能是实验数据基础的三个模型中模拟14 + 15 N和15 N的氮流:异化NO 3 -还原为NH 4 + (DNRA),植物氮外流和微生物生物量氮(MBN)转换。与NO 3 -的吸收相比,植物NH 4 + 的吸收较小。植物和微生物固定化铵的作用至少等于硝化率的35%。通过植物和/或微生物将NO 3 -迅速循环为NH 4 + 有助于生态系统中的氮保留,并可能使生长在农业土壤中的植物捕获更多的NH 4 + 比一般假定的要高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号