首页> 外文期刊>Plant and Soil >Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.)
【24h】

Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.)

机译:小麦幼苗根系结构性状的基因型变异及其对干旱适应的影响(Triticum aestivum L.)

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant−1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
机译:根系特征对于土壤勘探和地下资源获取至关重要。根体系结构特征决定了根系统或根体系结构的原位空间填充特性。根轴的生长角度是根系体系结构的主要组成部分,与许多农作物物种的采集效率密切相关。本研究的目的是研究27种当前澳大利亚和3种CIMMYT小麦(Triticum aestivum L.)基因型的生长角和精根数的基因型变异程度,并通过分形分析定量分析其根系结构。亚型的小麦基因型在耐旱性和生根特性上形成鲜明对比。小麦基因型的生长角和生根数显示出显着的基因型差异,其值分别为36至56(度)和3至5(植物 -1 )。基于小麦精根特性相似性的小麦基因型聚类分析得出四组。群体组成在一定程度上反映了基因型的遗传背景和环境适应性。在澳大利亚南部和西部的地中海环境中广泛种植的小麦品种通常具有较宽的生长角度和较少的精轴。相反,在北部种植区的深粘土土壤上具有优异性能的栽培品种,例如SeriM82,Baxter,Babax和Dharwar Dry,则表现出较窄的精浆轴角度。小麦基因型在分形维数(D)上也显示出显着变化。计算出的每个根系各个部分的D值表明,与标准品种Hartog相比,适应于北部地区的耐旱基因型倾向于在植物正下方的土壤体积中分布相对较多的根。这些发现表明,小麦根系结构与苗期精根轴的角度密切相关。讨论了基因型变异对种子根系特性和分形维数的适应性,以适应干旱环境类型,并着重强调了在水分受限环境下改良小麦品种育种中可能利用根系结构特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号