...
首页> 外文期刊>Plant Physiology >Genetic Engineering of the Biosynthesis of Glycinebetaine Enhances Photosynthesis against High Temperature Stress in Transgenic Tobacco Plants
【24h】

Genetic Engineering of the Biosynthesis of Glycinebetaine Enhances Photosynthesis against High Temperature Stress in Transgenic Tobacco Plants

机译:甘氨酸甜菜碱生物合成的基因工程增强了转基因烟草植物抗高温胁迫的光合作用

获取原文
获取原文并翻译 | 示例

摘要

Genetically engineered tobacco (Nicotiana tabacum) with the ability to synthesis glycinebetaine was established by introducing the BADH gene for betaine aldehyde dehydrogenase from spinach (Spinacia oleracea). The genetic engineering enabled the plants to accumulate glycinebetaine mainly in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperatures than that of wild-type plants. The analyses of chlorophyll fluorescence and the activation of Rubisco indicated that the enhancement of photosynthesis to high temperatures was not related to the function of photosystem II but to the Rubisco activase-mediated activation of Rubisco. Western-blotting analyses showed that high temperature stress led to the association of Rubisco activase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than in transgenic plants. The results in this study suggest that under high temperature stress, glycinebetaine maintains the activation of Rubisco by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fractions and thus enhances the tolerance of CO2 assimilation to high temperature stress. The results seem to suggest that engineering of the biosynthesis of glycinebetaine by transformation with the BADH gene might be an effective method for enhancing high temperature tolerance of plants.
机译:通过引入菠菜甜菜碱醛脱氢酶的BADH基因,建立了具有合成甘氨酸甜菜碱能力的基因工程烟草(Nicotiana tabacum)。基因工程使植物能够主要在叶绿体中积累甘氨酸甜菜碱,并增强了幼苗生长过程中对高温胁迫的耐受性。此外,与野生型植物相比,转基因植物的CO2同化对高温的耐受性更高。对叶绿素荧光和Rubisco活化的分析表明,光合作用对高温的增强与光系统II的功能无关,而与Rubisco活化酶介导的Rubisco活化有关。 Western印迹分析表明,高温胁迫导致Rubisco活化酶与基质组分中类囊体膜的缔合。但是,这种关联在野生型植物中比在转基因植物中更为明显。这项研究的结果表明,在高温胁迫下,甘氨酸甜菜碱可通过阻止Rubisco活化酶从可溶性基质成分固存在类囊体膜中来维持Rubisco的活化,从而增强了CO2同化对高温胁迫的耐受性。该结果似乎表明通过用BADH基因转化来工程改造甘氨酸甜菜碱的生物合成可能是增强植物的高温耐受性的有效方法。

著录项

  • 来源
    《Plant Physiology 》 |2005年第4期| p.00002299-0002309| 共11页
  • 作者单位

    Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号