首页> 外文期刊>Plant and Cell Physiology >Mechanisms of Water Transport Mediated by PIP Aquaporins and Their Regulation Via Phosphorylation Events Under Salinity Stressn in Barley Roots
【24h】

Mechanisms of Water Transport Mediated by PIP Aquaporins and Their Regulation Via Phosphorylation Events Under Salinity Stressn in Barley Roots

机译:大麦根系盐分胁迫下PIP水通道蛋白介导的水传输机制及其通过磷酸化事件的调控

获取原文
获取原文并翻译 | 示例
           

摘要

Water homeostasis is crucial to the growth and survival of plants under water-related stress. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. Here we report the water transport activity and mechanisms for the regulation of barley (Hordeum vulgare) PIP aquaporins. HvPIP2 but not HvPIP1 channels were found to show robust water transport activity when expressed alone in Xenopus laevis oocytes. However, the co-expression of HvPIP1 with HvPIP2 in oocytes resulted in significant increases in activity compared with the expression of HvPIP2 alone, suggesting the participation of HvPIP1 in water transport together with HvPIP2 presumably through heteromerization. Severe salinity stress (200 mM NaCl) significantly reduced root hydraulic conductivity (Lpr) and the accumulation of six of 10 HvPIP mRNAs. However, under relatively mild stress (100 mM NaCl), only a moderate reduction in Lpr with no significant difference in HvPIP mRNA levels was observed. Sorbitol-mediated osmotic stress equivalent to 100 and 200 mM NaCl induced nearly identical Lpr reductions in barley roots. Furthermore, the water transport activity in intact barley roots was suggested to require phosphorylation that is sensitive to a kinase inhibitor, staurosporine. HvPIP2s also showed water efflux activity in Xenopus oocytes, suggesting a potential ability to mediate water loss from cells under hypertonic conditions. Water transport via HvPIP aquaporins and the significance of reductions of Lpr in barley plants during salinity stress are discussed.
机译:水稳态对水胁迫下植物的生长和存活至关重要。质膜内在蛋白(PIP)已被证明是介导植物细胞吸收水分的主要通道。在这里,我们报告水运输活动和大麦(大麦)PIP水通道蛋白的调节机制。当在非洲爪蟾卵母细胞中单独表达时,发现HvPIP2通道而非HvPIP1通道显示出强大的水运输活性。但是,与单独表达HvPIP2的表达相比,HvPIP1和HvPIP2在卵母细胞中的共表达导致活性显着增加,这表明HvPIP1与HvPIP2一起参与了水运输,大概是通过异源化。严重盐分胁迫(200 mM NaCl)显着降低了根系的水力传导率(Lp r )和10个HvPIP mRNA中的6个的积累。然而,在相对轻度的压力下(100 mM NaCl),仅观察到Lp r 的适度降低,而HvPIP mRNA水平无明显差异。山梨糖醇介导的相当于100和200 mM NaCl的渗透压导致大麦根部Lp r 减少几乎相同。此外,据建议完整大麦根中的水运输活性需要对激酶抑制剂星形孢菌素敏感的磷酸化。 HvPIP2s在非洲爪蟾卵母细胞中也显示出水流出活性,表明在高渗条件下介导细胞水分流失的潜在能力。讨论了通过HvPIP水通道蛋白的水运输以及盐分胁迫下大麦植物中Lp r 减少的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号