...
首页> 外文期刊>Planetary and space science >Nanoparticles in the inner solar system
【24h】

Nanoparticles in the inner solar system

机译:内部太阳系中的纳米粒子

获取原文
获取原文并翻译 | 示例

摘要

We discuss different scenarios for the formation and dynamics of nanoparticles in the inner solar system. Particles up to a few tens of nanometer size, if formed at a distance larger than several 0.1 AU from the Sun, are picked up by the solar wind and therefore do not reach the regions closer to the sun. At distances ≤ 0.1 AU particles of several tens of nanometer in size can stay in bound orbits and, aside from the Lorentz force, the plasma and the photon Poynting-Robertson effect determine their spatial distribution. Local sources of nanometer-sized particles in the inner solar system are collisional fragmentation and sublimation of dust and meteoroids. The most likely materials to survive in the very vicinity of the Sun are MgO particles from the sublimation of cometary and meteoritic silicates, nanodiamonds originating from meteoroid material, and possibly carbon structures formed by thermal alteration of organics. The nanoparticles may produce spectral features in a limited spectral interval, and this spectral interval varies with particle size, composition and temperature. Bearing in mind the wide size distribution of solar system dust and the preponderance of larger particles, it is unlikely that nanoparticles can be detected in thermal emission or scattered light brightness and we are unable to predict observable features for these nanoparticles. If the nanodust produced observable features, they are most likely to appear in the blue or near infrared. We suggest a more promising option is the in situ detection of the particles.
机译:我们讨论了内部太阳系中纳米粒子的形成和动力学的不同情况。如果与太阳的距离大于几个0.1 AU,则形成的几十纳米大小的粒子会被太阳风拾取,因此不会到达更靠近太阳的区域。在距离≤0.1 AU时,几十纳米大小的粒子可以停留在束缚轨道上,除了洛伦兹力之外,等离子体和光子Poynting-Robertson效应决定了它们的空间分布。内部太阳系中纳米级粒子的局部来源是尘埃和流星体的碰撞碎片和升华。在太阳附近生存的最可能的材料是来自彗星和陨石硅酸盐升华的MgO颗粒,源自流星体材料的纳米金刚石,以及可能由有机物的热变质形成的碳结构。纳米颗粒可以在有限的光谱间隔内产生光谱特征,并且该光谱间隔随粒度,组成和温度而变化。考虑到太阳系粉尘的尺寸分布较广,且较大颗粒占优势,因此不可能在热发射或散射光亮度中检测到纳米颗粒,并且我们无法预测这些纳米颗粒的可观察特征。如果纳米粉尘产生了可观察到的特征,则它们最有可能以蓝色或近红外出现。我们建议一个更有希望的选择是原位检测颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号