...
首页> 外文期刊>Planetary and space science >Solar X-ray flare hazards on the surface of Mars
【24h】

Solar X-ray flare hazards on the surface of Mars

机译:火星表面的太阳X射线耀斑危害

获取原文
获取原文并翻译 | 示例

摘要

Putative organisms on the Martian surface would be exposed to potentially high doses of ionizing radiation during strong solar X-ray flares. We extrapolate the observed flare frequency-energy release scaling relation to total X-ray energies much larger than seen so far for the Sun, an assumption supported by observations of flares on other solar- and subsolar-mass main sequence stars. Flare spectra are taken as power laws, with the logarithmic slope a parameter based on the observed statistics of the most energetic hard X-ray flare spectra. We calculate surface spectra using a Monte Carlo code we developed for the transport of X-rays and gamma rays, including photoabsorption and detailed Compton scattering. Biological doses from indirect genome damage are calculated for each parameterized flare spectrum by integration over the X-ray opacity of water. The resulting doses depend sensitively on spectral slope, which varies greatly and unsystematically for solar flares. Using the roughly uniform observed distribution of spectral slopes, we estimate the mean waiting time for solar flares producing a given biological dose of ionizing radiation on Mars and compare with lethal dose data for a wide range of terrestrial organisms. These timescales range from decades for significant human health risk to 0.5 Myr for D. radiodurans lethality. Such doses require total flare energies of 10~(33)-10~(38) erg, the lower range of which has been observed for other stars. Flares are intermittent bursts, so acute lethality will only occur on the sunward hemisphere during a sufficiently energetic flare, unlike low-dose-rate, extended damage by cosmic rays. We estimate the soil and CO_2 ice columns required to provide 1/e shielding as 4-9g cm~(-2), depending on flare mean energy and atmospheric column density. Topographic altitude variations give a factor of two variation in dose for a given flare. Life in ice layers that may exist ~100g cm~(-2) below the surface would be well protected. Finally, we point out that designing spacesuits to sufficiently block this radiation on Mars missions may be difficult, given the conflict between solutions for lightweight protection from energetic particles and those from X-rays.
机译:在强烈的太阳X射线耀斑中,火星表面上的假定生物将暴露于潜在的高剂量电离辐射中。我们推断观测到的耀斑频率-能量释放比例关系与总X射线能量的关系要远大于迄今为止对太阳的观察,这一假设得到了对其他太阳质量和太阳系次主星上耀斑的观察的支持。耀斑光谱被视为幂定律,对数斜率是一个参数,该参数基于观察到的最强X射线耀斑光谱的统计数据。我们使用为开发X射线和伽马射线而开发的蒙特卡洛代码来计算表面光谱,包括光吸收和详细的康普顿散射。通过对水的X射线不透明度进行积分,可以为每个参数化的耀斑光谱计算出间接基因组损伤产生的生物剂量。产生的剂量敏感地取决于光谱斜率,光谱斜率对于太阳耀斑有很大的和非系统的变化。使用大致均匀的频谱斜率观察分布,我们估计了太阳耀斑在火星上产生给定生物学剂量的电离辐射的平均等待时间,并与各种陆地生物的致死剂量数据进行了比较。这些时间范围从数十年的重大人类健康风险到0.5迪尔的放射性杜鹃花致死性。这样的剂量需要总耀斑能量为10〜(33)-10〜(38)erg,对于其他恒星,该能量范围较小。耀斑是间歇性爆发,因此急性致死性只会在足够高能的耀斑期间在朝阳的半球发生,这与低剂量率宇宙射线造成的长期伤害不同。根据火炬平均能量和大气柱密度,我们估计提供1 / e防护所需的土壤和CO_2冰柱为4-9g cm〜(-2)。对于给定的耀斑,地形高度变化给出了剂量变化的两倍。在冰层以下可能存在的生命将得到很好的保护,该冰层可能位于地表以下约100g cm〜(-2)。最后,我们指出,鉴于为高能粒子提供轻质保护的解决方案与来自X射线的解决方案之间存在冲突,设计太空服以充分阻止火星飞行中的辐射可能很困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号