...
首页> 外文期刊>Planetary and space science >Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption
【24h】

Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption

机译:MESSENGER飞越期间水星上的电子迁移和沉淀:对电子刺激解吸的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To examine electron transport, energization, and precipitation in Mercury's magnetosphere, a hybrid simulation study has been carried out that follows electron trajectories within the global magneto-spheric electric and magnetic field configuration of Mercury. We report analysis for two solar-wind parameter conditions corresponding to the first two MESSENGER Mercury flybys on January 14, 2008, and October 6, 2008, which occurred for similar solar wind speed and density but contrasting interplanetary magnetic field (IMF) directions. During the first flyby the IMF had a northward component, while during the second flyby the IMF was southward. Electron trajectories are traced in the fields of global hybrid simulations for the two flybys. Some solar wind electrons follow complex trajectories at or near where dayside reconnection occurs and enter the magnetosphere at these locations. The entry locations depend on the IMF orientation (north or south). As the electrons move through the entry regions they can be energized as they execute non-adiabatic (demagnetized) motion. Some electrons become magnetically trapped and drift around the planet with energies on the order of 1-10 keV. The highest energy of electrons anywhere in the magnetosphere is about 25 keV, consistent with the absence of high-energy ( > 35 keV) electrons observed during either MESSENGER flyby. Once within the magnetosphere, a fraction of the electrons precipitates at the planetary surface with fluxes on the order of 10~9cm~(-2)s~(-1) and with energies of hundreds of eV. This finding has important implications for the viability of electron-stimulated desorption (ESD) as a mechanism for contributing to the formation of the exosphere and heavy ion cloud around Mercury. From laboratory estimates of ESD ion yields, a calculated ion production rate due to ESD at Mercury is found to be on par with ion sputtering yields.
机译:为了检查水星磁层中的电子传输,增能和沉淀,已经进行了混合模拟研究,该研究遵循了水星在全球磁层电场和磁场中的电子轨迹。我们报告了对与前两个MESSENGER Mercury飞越相对应的两个太阳风参数条件的分析,分别在2008年1月14日和2008年10月6日发生,它们是在相似的太阳风速和密度但行星际磁场(IMF)方向相反的情况下发生的。 IMF在第一次飞越期间向北,而IMF在第二次飞越期间向南。电子轨迹在两个飞越的全局混合仿真领域中进行了追踪。一些太阳风电子在发生日间重新连接的地方或附近遵循复杂的轨迹,并在这些位置进入磁层。进入位置取决于IMF方向(北向或南向)。当电子移动通过进入区域时,它们会在执行非绝热(去磁)运动时被激发。一些电子被磁俘获,并以大约1-10 keV的能量在行星周围漂移。磁层中任何地方电子的最高能量约为25 keV,这与在任一MESSENGER飞越期间均未观察到高能(> 35 keV)电子一致。进入磁层后,一部分电子以10〜9cm〜(-2)s〜(-1)的通量和数百eV的能量在行星表面沉淀。这一发现对于电子刺激解吸(ESD)的可行性具有重要意义,该机制是有助于形成水星外层和重离子云的机制。根据实验室对ESD离子产率的估计,发现由于水银ESD引起的计算出的离子产生速率与离子溅射产率相当。

著录项

  • 来源
    《Planetary and space science》 |2011年第15期|p.2026-2036|共11页
  • 作者单位

    Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA;

    Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA,Astronomical Institute, ASCR, 14131 Prague. Czech Republic;

    Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA, Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1567, USA;

    Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA;

    Astronomical Institute, ASCR, 14131 Prague. Czech Republic;

    Heliophysics Science Division, NASA Goddard Space Flight Center, Creenbelt, MD 20771, USA;

    Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA;

    Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA;

    Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA;

    Heliophysics Science Division, NASA Goddard Space Flight Center, Creenbelt, MD 20771, USA;

    Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA;

    Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA;

    Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA;

    Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA,Academy of Athens, Office of Space Research Technology, Athens 11527, Greece;

    Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA;

    School of Chemistry and Biochemistry and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA;

    School of Chemistry and Biochemistry and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA;

    Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA;

    Lunar and Planetary Laboratory University of Arizona, Tucson, AZ 85721, USA;

    Physics Department, The Catholic University of America, Washington, DC 20064, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    mercury; magnetosphere; numerical simulations; electron transport; electron-stimulated desorptionl; MESSENGER;

    机译:汞;磁层数值模拟;电子传输电子刺激解吸;信使;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号