...
首页> 外文期刊>Planetary and space science >Cross-scale coupling at a perpendicular collisionless shock
【24h】

Cross-scale coupling at a perpendicular collisionless shock

机译:在垂直无碰撞冲击下的跨尺度耦合

获取原文
获取原文并翻译 | 示例

摘要

A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (M_A = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a "shock-rest-frame model". The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.
机译:在具有相对较低的Alfven马赫数(M_A = 5)的垂直无碰撞冲击下进行了完整的粒子模拟研究。最近的自洽混合和全粒子模拟表明,离子动力学对于垂直无碰撞冲击的非平稳性至关重要,这意味着由于离子动力学引起的物理过程会改变流体等离子体的冲击跳跃条件。这是流体动力学和离子动力学之间的跨尺度耦合。另一方面,研究电子动力学与离子动力学或流体动力学的跨尺度耦合并不容易,因为进行无碰撞冲击的大规模全粒子模拟是一项艰巨的任务。在本研究中,我们使用“休克-静止框架模型”进行了二维(2D)电磁全粒子模拟。为了包括电子和离子的全部动力学,模拟域被认为大于离子惯性长度。目前的模拟结果已经证实了冲击结构从周期性自重变到准平稳冲击前沿。在过渡过程中,电子和离子在平行于冲击磁场的方向上被热化。离子在电击脚处被强烈的离子温度各向异性激发的低频电磁波(或波纹结构)加热,而电子在电击过冲时被电子温度各向异性激发的高频电磁波(或啸叫模式波)​​加热。 。当电子平行温度高于离子平行温度时,在冲击过冲处也会激发离子声波。我们期望离子声波负责电子和离子的平行扩散,并且离子级介观不稳定性和电子级微观不稳定性之间的跨尺度耦合对于无碰撞垂直冲击的结构和动力学很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号