...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Pressure-tuning structural and electronic transitions in semimetal CoSb
【24h】

Pressure-tuning structural and electronic transitions in semimetal CoSb

机译:半型COSB中的压力调整结构和电子转换

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recently, theoretical work predicted that the cobalt mono-antimonide (CoSb) with a Ni As-type structure could be stabilized in the form of a monolayer PbO-type FeSe structure on a SrTiO_3 substrate [Ding et al., Phys. Rev. Lett. 124, 027002 (2020)], which may host high-temperature superconductivity comparable with monolayer FeSe [Wang et al., Chin. Phys. Lett. 29, 037402 (2012)]. Motivated to explore the possible pressure-induced superconductivity in bulk CoSb associated with structural instability, utilizing the diamond anvil cell technique, we herein report a comprehensive study of the electrical transport, crystalline structure, and electronic band structure of the bulk CoSb with electrical conductivity, synchrotron x-ray diffraction, and first-principles calculations. No pressure-induced superconductivity is detected down to 2 K with pressure up to 42.0 GPa, but a structural phase transition occurs between 11.7 and 16.2 GPa. Instead, an electronic transition, featured by a carrier-type switch from an electron < 10GPa to a hole (n→ p) dominant one at higher pressure, is observed. The n-p switch at room temperature is ascribed to a pressure-induced structural phase transition from hexagonal (P6_3/ mmc, No. 194) to orthorhombic (Pnma, No. 62), which is confirmed by a combination of first-principles calculations and structural refinement. Interestingly, the temperature-driven p-n switch also occurs in the orthorhombic phase at ~90 K, emphasizing the tunable multiband structure (with charge neutrality point) of the semimetal CoSb by pressure or temperature. Moreover, the electronic transition is assigned as a semimetal-semimetal transition. The resistivity shows a robust T~3 dependence trend <30 K for both semimetal phases. At high temperature, all the ρ(T) curves become saturated, as described by the parallel-resistor model. The results support that the s-d interband scattering dominates the conductivity of both the hexagonal and orthorhombic phases under pressure. The superconductivity absence implications are discussed, assuming the electron-phonon interaction in CoSb drives the superconductivity.
机译:最近,理论上的作用预测,钴单锑(COSB)与Ni时型结构的单层PbO型Fese结构的形式可以稳定[Ding等人。,物理。 rev. lett。 124,027002(2020)],其可能宿主高温超导性与单层FESES [Wang等,下巴。物理。吧。 29,037402(2012)]。用于探讨与结构不稳定性相关的散装COSB中可能的压力诱导的超导性,利用金刚石砧座技术,我们在本文中报告了对电导率的散装COSB的电气传输,晶体结构和电子带结构的综合研究,同步X射线衍射和第一原理计算。没有压力诱导的超导率,下降至2K,高达42.0GPa,但在11.7和16.2GPa之间发生结构相转变。相反,观察到从电子<10GPA到孔(n→P)在更高压力下主导地位的载体型开关特征的电子转换。室温下的NP开关归因于从六边形(P6_3 / MMC,No.194)到正交(PNMA,No.62)的压力诱导的结构相转变,其通过第一原理计算和结构的组合来证实细化。有趣的是,温度驱动的P-N开关也发生在〜90k的正交相中,并通过压力或温度强调半型COSB的可调谐多频带结构(具有电荷中性点)。此外,电子转换被分配为半想半度转换。电阻率显示出稳健的T〜3依赖性趋势<30 k对于半阶段。在高温下,所有ρ(t)曲线都变得饱和,如并联电阻模型所述。结果支持S-D间距散射在压力下占据六边形和正晶相的电导率。假设COSB中的电子 - 声子相互作用驱动超导性,讨论了超导缺席的影响。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2021年第5期|054511.1-054511.12|共12页
  • 作者单位

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

    School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou 221116 China;

    Materials Genome Institute Shanghai University Shanghai 200444 China;

    Inovation and Integration Center of New Laser Technology Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China;

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

    Materials Genome Institute Shanghai University Shanghai 200444 China;

    School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou 221116 China;

    Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号