首页> 外文期刊>Physical review >Mapping Dirac fermions in the intrinsic antiferromagnetic topological insulators (MnBi_2Te_4)(Bi_2Te_3)_n (n = 0, 1)
【24h】

Mapping Dirac fermions in the intrinsic antiferromagnetic topological insulators (MnBi_2Te_4)(Bi_2Te_3)_n (n = 0, 1)

机译:在内在反铁磁拓扑绝缘体(MNBI_2TE_4)(BI_2TE_3)_n(n = 0,1)中映射DIRAC码头

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nontrivial band topology combined with magnetic order can lead to rich emergent phenomena, including quantized anomalous Hall effect and axion insulator state. Here we use scanning tunneling microscopy to image the surface Dirac fermions of the newly discovered magnetic topological insulators MnBi_2Te_4 and MnBi_4Te_7. We have determined the energy dispersion and helical spin texture of the surface slates through quasiparticle interference patterns far above Dirac energy. Approaching the Dirac point, the native defects in the MnBi_2Te_4 septuple layer give rise to resonance states which extend spatially and potentially hinder the detection of a mass gap in the spectra. Our results impose tight constraints on the magnitude of the possible mass gap at the nanoscale and provide key ingredients for a comprehensive understanding of the electronic structure in this class of fascinating materials.
机译:非动力带拓扑结合磁秩序可以导致丰富的紧急现象,包括量化异常霍尔效应和轴绝缘子状态。在这里,我们使用扫描隧道显微镜来通过MNBI_2TE_4和MNBI_4TE_7的新发现的磁拓扑绝缘体的表面DIERAC晶片成像。我们已经确定了表面板块的能量分散和螺旋旋转纹理通过远高于Dirac能量的Quasiplicallicle干扰图案。接近DIRAC点,MNBI_2TE_4偏离层中的天然缺陷导致空间延伸的谐振状态,并且可能阻碍光谱中的质量差距的检测。我们的结果对纳米级可能的质量差距的大小造成了严重的限制,并提供了综合了解这类迷人材料中电子结构的关键成分。

著录项

  • 来源
    《Physical review》 |2020年第16期|161115.1-161115.7|共7页
  • 作者单位

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Wuhan National High Magnetic Field Center and School of Physics Huazhong University of Science and Technology Wuhan 430074 China;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Department of Materials Science and Engineering Stanford University Stanford California 94305 USA;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China;

    Wuhan National High Magnetic Field Center and School of Physics Huazhong University of Science and Technology Wuhan 430074 China;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

    Department of Physics and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics University of Science and Technology of China Hefei Anhui 230026 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号