...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Electron-phonon coupling and superconductivity in the doped topological crystalline insulator (Pb_(0.5)Sn_(0.5))_(1-x)In_xTe
【24h】

Electron-phonon coupling and superconductivity in the doped topological crystalline insulator (Pb_(0.5)Sn_(0.5))_(1-x)In_xTe

机译:掺杂拓扑晶体绝缘体中的电子 - 声子耦合和超导性(PB_(0.5)SN_(0.5))_(1-x)IN_XTE

获取原文
获取原文并翻译 | 示例
           

摘要

We present a neutron-scattering study of phonons in single crystals of (Pb_(0.5)Sn_(0.5))_(1-x) In_x Te with x = 0 (metallic, but nonsuperconducting) and x = 0.2 (nonmetallic normal state, but superconducting). We map the phonon dispersions (more completely for x = 0) and find general consistency with theoretical calculations, except for the transverse and longitudinal optical (LO) modes at the Brillouin-zone center. At low temperature, both modes are strongly damped but sit at a finite energy (≈4 meV in both samples), shifting to higher energy at room temperature. These modes are soft due to a proximate structural instability driven by the sensitivity of Pb-Te and Sn-Te p-orbital hybridization to off-center displacements of the metal atoms. The impact of the soft optical modes on the low-energy acoustic modes is inferred from the low thermal conductivity, especially at low temperature. Given that the strongest electron-phonon coupling is predicted for the LO mode, which should be similar for both studied compositions, it is intriguing that only the In-doped crystal is superconducting. In addition, we observe elastic diffuse (Huang) scattering that is qualitatively explained by the difference in Pb-Te and Sn-Te bond lengths within the lattice of randomly distributed Pb and Sn sites. We also confirm the presence of anomalous diffuse low-energy atomic vibrations that we speculatively attribute to local fluctuations of individual Pb atoms between off-center sites.
机译:我们在具有x = 0(金属的PB_(0.5)SN_(0.5)SN_(0.5))_(1-x)IN_X TE的单晶(PB_(0.5)SN_(0.5))_(1-X)in_x Te(金属,但非不合函数)和x = 0.2(非金属正常状态,但超导)。我们映射声子分散体(更完全用于X = 0),除了布里渊区中心的横向和纵向光学(LO)模式外,还可以找到与理论计算的一般一致性。在低温下,两种模式都被强烈阻尼,但在有限的能量(两个样品中的≈4mev)处坐下来,在室温下换档到更高的能量。由于PB-TE和SN-TE对轨道杂交对金属原子的偏心位移的近似结构稳定性,这些模式是柔软的。从低温导电率推断出软光学模式对低能声学模式的影响,尤其是在低温下。考虑到最强的电子 - 声子耦合预测为LO模式,这对于两种研究的组合物应该相似,它很有趣的是,只有掺杂型晶体是超导。此外,我们观察到随机分布在随机分布的PB和SN位点的晶格内的PB-TE和SN-TE键长度的差异来定义解释的弹性漫射(黄)散射。我们还确认存在异常漫射的低能量原子振动,从而推测偏离中心位点之间单个PB原子的局部波动。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第10期|104511.1-104511.13|共13页
  • 作者单位

    Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory Upton New York 11973 USA;

    Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory Upton New York 11973 USA;

    Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA;

    Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA;

    National Institute of Standards and Technology Center for Neutron Research National Institute of Standards and Technology Gaithersburg Maryland 20899 USA;

    National Institute of Standards and Technology Center for Neutron Research National Institute of Standards and Technology Gaithersburg Maryland 20899 USA Department of Materials Science and Engineering University of Maryland College Park Maryland 20742 USA;

    School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China;

    National Laboratory of Solid State Micro structures and Department of Physics Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Micro structures and Department of Physics Nanjing University Nanjing 210093 China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Micro structures and Department of Physics Nanjing University Nanjing 210093 China Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    Materials Science and Engineering Department University of Washington Seattle Washington 98195 USA;

    Materials Science and Engineering Department University of Washington Seattle Washington 98195 USA;

    Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory Upton New York 11973 USA;

    Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory Upton New York 11973 USA;

    Condensed Matter Physics and Materials Science Division Brookhaven National Laboratory Upton New York 11973 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号