...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV_4S_8 and GaV_4Se_8
【24h】

Stability of Neel-type skyrmion lattice against oblique magnetic fields in GaV_4S_8 and GaV_4Se_8

机译:GAV_4S_8和GAV_4SE_8逆磁场对斜磁场的NEEL型Skyrmion格的稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Nanometer-scale magnetization configurations known as magnetic skyrmions have mostly been studied in cubic chiral helimagnets, in which they are Bloch-type and their axes align along the applied magnetic field. In contrast, the orientation of Neel-type skyrmions is locked to the polar axis of the host material's underlying crystal structure. In the lacunar spinels GaV_4S_8 and GaV_4Se_8, the Neel-type skyrmion lattice phase exists for externally applied magnetic fields parallel to this axis and withstands oblique magnetic fields up to some critical angle. Here, we map out the stability of the skyrmion lattice phase in both crystals as a function of field angle and magnitude using dynamic cantilever magnetometry. The measured phase diagrams reproduce the major features predicted by a recent theoretical model, including a reentrant cycloidal phase in GaV_4Se_8. Nonetheless, we observe a greater robustness of the skyrmion phase to oblique fields, suggesting possible refinements to the model. Besides identifying transitions between the cycloidal, skyrmion lattice, and ferromagnetic states in the bulk, we measure additional anomalies in GaV_4Se_8 and assign them to magnetic states confined to polar structural domain walls.
机译:纳米级磁化配置,称为磁性臭氧的构造主要是在立方手性升恒中进行的,其中它们是沿着所施加的磁场沿着所施加的磁场对齐的。相反,Neel型臭氧的取向被锁定到主体材料的底层晶体结构的极轴。在Lavunar尖晶石Gav_4s_8和Gav_4se_8中,Neel型Skyrmion格子相对于外部施加到该轴的外部施加的磁场,并承受倾斜磁场,直到一些临界角度。在这里,我们使用动态悬臂磁度测量仪作为场角度和幅度的函数映射两种晶体中的Skyrmion格相的稳定性。测量的相图再现了最近理论模型预测的主要特征,包括Gav_4Se_8中的重圈循环相。尽管如此,我们观察到斜域阶段的更大稳健性,倾斜领域,表明模型可能的改进。除了在体积中识别摆线,斯基序格子和铁磁态之间的过渡,我们在Gav_4Se_8中测量额外的异常,并将其分配给限制在极地结构域壁上的磁性状态。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2020年第10期|104407.1-104407.9|共9页
  • 作者单位

    Department of Physics University of Basel 4056 Basel Switzerland;

    Department of Physics University of Basel 4056 Basel Switzerland;

    Experimental Physics V Center for Electronic Correlations and Magnetism University of Augsburg 86159 Augsburg Germany;

    Department of Physics University of Basel 4056 Basel Switzerland;

    Department of Physics Budapest University of Technology and Economics 1111 Budapest Hungary Hungarian Academy of Sciences Premium Postdoctor Program 1051 Budapest Hungary;

    Experimental Physics V Center for Electronic Correlations and Magnetism University of Augsburg 86159 Augsburg Germany Institute of Applied Physics MD-2028 Chisinau Republic of Moldova;

    Department of Chemistry Faculty of Science Hiroshima University Kagamiyama Higashi Hiroshima Hiroshima 739-8526 Japan;

    Experimental Physics V Center for Electronic Correlations and Magnetism University of Augsburg 86159 Augsburg Germany;

    Department of Physics University of Basel 4056 Basel Switzerland Swiss Nanoscience Institute University of Basel 4056 Basel Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号