首页> 外文期刊>Physical review >Inverse design of broadband highly reflective metasurfaces using neural networks
【24h】

Inverse design of broadband highly reflective metasurfaces using neural networks

机译:使用神经网络逆向宽带高度反光元件的逆设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Metamaterials exhibit optical properties not observed in traditional materials. Such behavior emerges from the interaction of light with precisely engineered subwavelength features built from different constituent materials. Recent research into the design and fabrication of metamaterial-based devices has established a foundation for the next generation of functional materials. Of particular interest is the all-dielectric metasurface, a two-dimensional metamaterial exploiting shape-dependent resonant features while avoiding losses through the use of dielectric building blocks. However, even this simple metamaterial class has a nearly infinite number of possible configurations; researchers now require new methods to efficiently explore these types of design spaces. In this work, we employ rigorous coupled wave analysis to calculate reflection and transmission spectra associated with a class of open-cylinder all-dielectric metasurface. By altering the geometric parameters of open-cylinder metasurfaces, we generate a sparse training data set and construct artificial neural networks capable of relating metasurface geometries to reflection and transmission spectra. Here, we successfully demonstrate that pseudo autodecoder neural networks can suggest device geometries based on a requested optical performance-inverting the design process for this metasurface class. As an example, we query for and discover a particular open-cylinder metasurface displaying a reflection band R ≥ 99% centered at λ_0 = 1550 nm that is much broader △λ = 450 nm than anything reported for optical metasurfaces. We then analyze the modal interplay in the open-cylinder metasurface to better understand the underlying physics driving the broadband behavior. Ultimately, we conclude that neural networks are ideally suited for generally approaching these types of complex inverse design problems.
机译:超材料表现出在传统材料中未观察到的光学性质。这种行为从光的相互作用中出现了具有从不同组成材料构建的精确设计的亚波长特征的相互作用。最近的超石材设备设计和制造的研究已经为下一代功能材料建立了基础。特别感兴趣的是全电介质元表面,这是一种二维超级利用形状依赖性谐振特征,同时通过使用介质构造块来避免损失。然而,即使是这种简单的超石料类也具有几乎无限的可能配置;研究人员现在需要新的方法来有效地探索这些类型的设计空间。在这项工作中,我们采用严格的耦合波分析来计算与一类开口缸全电介质元表面相关的反射和透射光谱。通过改变开放式缸元件的几何参数,我们生成稀疏训练数据集,并构建能够将元表面几何形状与反射和传输光谱相关的人工神经网络。在这里,我们成功地证明了伪自动驾统的神经网络可以基于所请求的光学性能反转该元表面类的设计过程来建议设备几何。作为示例,我们查询并发现特定的开放式圆柱元接口,其显示在λ_0= 1550nm以λ_0= 1550nm以λ= 1550nm为中心的反射带r≥nλ= 450nm的反射带≥99%,而不是所报告的光学元件。然后,我们分析了开放式气缸元面中的模态相互作用,以更好地了解驱动宽带行为的底层物理。最终,我们得出结论,神经网络非常适合通常接近这些类型的复杂逆设计问题。

著录项

  • 来源
    《Physical review》 |2020年第19期|195104.1-195104.9|共9页
  • 作者单位

    Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. Wright-Patterson Air Force Base Ohio 45433 USA;

    Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. Wright-Patterson Air Force Base Ohio 45433 USA Azimuth Corporation 4027 Colonel Glenn Hwy #230 Beavercreek Ohio 45431 USA;

    Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. Wright-Patterson Air Force Base Ohio 45433 USA;

    Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. Wright-Patterson Air Force Base Ohio 45433 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号