...
首页> 外文期刊>Physical review >Valley drift and valley current modulation in strained monolayer MoS_2
【24h】

Valley drift and valley current modulation in strained monolayer MoS_2

机译:紧张单层MOS2中的谷漂移和谷电流调制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Elastic-mechanical deformations are found to dramatically alter the electronic properties of monolayer (ML) MoS2; particularly, the low-energy Bloch bands are responsive to a directional strain. In this study, in-plane uniaxial deformation is found to drift the low-energy electron/hole valleys of strained ML-MoS2 far away from K/K' points in the Brillouin zone (BZ). The amount of drift differs notably from hole to electron bands, where the conduction band minimum (CBM) drifts nearly 2 times more than the valence band maximum (VBM) in response to a progressively increasing strain field (0-10%). The resulting strain-induced valley asymmetry/decoherence can lift the momentum degeneracy of valley carriers at the K point, thereby affecting the low-energy valley excitations (K-valley polarization) in a strained ML-MoS2 lattice. The quantum origin of this decoherent valley arises from the differences in the Bloch orbital wave functions of electron and hole states at the exciton band edges and their deformation under strain. A higher drift (1.5 times) is noticed when strain is along the zigzag (ZZ) axis relative to the armchair (AC) axis, which is attributed to a faster decline in Young's modulus and Poisson's ratio (PR) along the ZZ direction. A similar valley drift only in the VBM of uniaxially strained ML-MoS2 was reported in an earlier local density approximation (LDA) based density functional theory (DFT) study [Q. Zhang et al., Phys. Rev. B 88, 245447 (2013)], where a massive valley drift occurring at the CBM was fully overlooked. Moreover, the giant VBM drift reported therein is 6 times the drift observed in our DFT studies based on spin-orbit coupling (SOC) and Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) functionals. The physical origin of valley drift has been ascertained in our thorough investigations. The robustness of our approach is substantiated as follows. With progressive increase in strain magnitude (0-10%), the band gap remains direct up to 2% uniaxial tensile strain, under SOC, which accurately reproduces the experimental strain-induced direct-to-indirect band gap transitions occurring at similar to 2% strain. Based on LDA-DFT [Q. Zhang et al., Phys. Rev. B 88, 245447 (2013)], this crossover in band gap has been incorrectly reported to occur at a higher value of uniaxial strain of 4%. Moreover, the direct SOC band gap shows a linear redshift at a rate of 51-53 meV/(% of strain), under uniaxial tensile strain, which is in excellent quantitative agreement with experimentally observed rates in the redshift of direct excitonic transitions measured in several optical absorption and photoluminescence (PL) spectroscopy experiments. In addition, the Berry curvature Omega(k) of electron/hole bands gets significantly modulated in strained ML-MoS2, where the intensity of the flux profile increases as a function of the magnitude of strain with an opposite drift around K/K', when strained along the ZZ/AC direction. A strong strain-valley coupling leads to an enhancement in the strength of spin-orbit induced spin splitting of bands at VBM/CBM, which is sizably enhanced (similar to 7 meV) simply by the strain-controlled orbital motions. Our findings are of prime importance in the valley physics of MoS2. Besides, the important theoretical insights emerging from this work will trigger further experimental investigations on ML-MoS2 to realize its novel technological potential in nanoelectronics, spintronics, and valleytronics.
机译:发现弹性机械变形显着改变单层(ML)MOS2的电子性质;特别地,低能量的Bloch条带响应于方向应变。在该研究中,发现面内的单轴变形将漂移远离布里渊区(BZ)中的应变ML-MOS2的低能量电子/孔谷。漂移量显着不同地不同于电子带的孔,其中导通带最小(CBM)响应于逐渐增加的应变场(0-10%)偏差比价带最大值(VBM)的近2倍。所得到的应变诱导的谷不对称/脱干术可以提升K点处的谷载体的动量退化,从而影响应变ML-MOS2晶格中的低能量谷激发(K-Valley偏振)。该拆卸谷的量子来源产生电子和孔状态在激子带边缘的Bloch轨道波函数的差异及其在应变下的变形。当应变相对于扶手椅(AC)轴沿Z字形(ZZ)轴线时,注意到更高的漂移(> 1.5次),这归因于沿ZZ方向的杨氏模量和泊松比(PR)的更快下降。仅在基于局部密度近似(LDA)的密度泛函理论(DFT)研究中报告了仅在单轴紧张ML-MOS2的VBM的类似谷漂移[Q.张等人。,phy。 Rev. B 88,245447(2013)],在CBM处发生的大型山谷漂移完全忽略。此外,其中报告的巨大VBM漂移是基于旋转轨道耦合(SoC)和Perdew-Burke-Ernzerhof广义梯度近似(PBE-GGA)功能的DFT研究中观察到的6倍。在我们的彻底调查中,已经确定了谷漂移的物理来源。我们方法的稳健性如下。随着应变幅度(0-10%)的逐渐增加,带隙在SOC下仍然直接引起2%的单轴拉伸菌株,其精确地再现实验应变诱导的直接间接带隙过渡发生在类似于2的情况下发生% 拉紧。基于LDA-DFT [Q.张等人。,phy。 Rev. B 88,245447(2013)],这种带隙中的交叉据不正确地报告到高度值为4%的单轴应变值。此外,直接SoC带隙显示在单轴拉伸菌株下以51-53meV /(菌株%占菌株%)的速率的线性红移,这与在测量的直接激发转换的红移中的实验观察到的速率优异地进行了优异的定量协议几种光学吸收和光致发光(PL)光谱实验。另外,电子/孔条带的浆果曲率ω(k)在应变ML-MOS2中显着调制,其中磁通曲线的强度随着k / k'周围相反漂移的应变大小的函数而增加,沿ZZ / AC方向紧张时。强烈的应变谷耦合导致旋转轨道引起的旋转轨道强度的增强,其在VBM / CBM处的带状条带的旋转分裂,其简单地通过应变控制的轨道运动来达到(类似于7meV)。我们的研究结果在MOS2的谷物理中具有重要意义。此外,从这项工作中出现的重要理论洞察力将触发对ML-MOS2的进一步实验研究,以实现其新颖的纳米电子,闪光和谷族的技术潜力。

著录项

  • 来源
    《Physical review》 |2019年第16期|165413.1-165413.14|共14页
  • 作者单位

    Inst Nano Sci & Technol Phase 10 Sect 64 Mohali 160062 Punjab India;

    Inst Nano Sci & Technol Phase 10 Sect 64 Mohali 160062 Punjab India;

    Inst Nano Sci & Technol Phase 10 Sect 64 Mohali 160062 Punjab India;

    Inst Nano Sci & Technol Phase 10 Sect 64 Mohali 160062 Punjab India;

    Inst Nano Sci & Technol Phase 10 Sect 64 Mohali 160062 Punjab India;

    Inst Nano Sci & Technol Phase 10 Sect 64 Mohali 160062 Punjab India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号